A. Hosokawa and T. Otani, Ultrasonic wave propagation in bovine cancellous bone, The Journal of the Acoustical Society of America, vol.101, issue.1, pp.558-548, 1997.
DOI : 10.1121/1.418118

A. B. Wood, A Textbook of Sound, Bell and Sons, p.561, 1955.

M. A. Biot, Theory of Propagation of Elastic Waves in a Fluid
URL : https://hal.archives-ouvertes.fr/hal-01368668

M. A. Biot, Theory of Propagation of Elastic Waves in a Fluid
URL : https://hal.archives-ouvertes.fr/hal-01368668

P. Solid and . Ii, Higher Frequency Range, The Journal of the Acoustical 566, Society of America, vol.28, issue.179, p.567, 1956.

T. J. Plona, Observation of a second bulk compressional wave in a porous 568 medium at ultrasonic frequencies, Applied Physics Letters, vol.36, issue.259, p.569, 1980.

R. Lakes, H. Yoon, and J. Katz, Slow compressional wave propagation in wet 570 human and bovine cortical bone, Science, pp.513-515, 1983.

Z. E. Fellah, N. Sebaa, M. Fellah, F. G. Mitri, E. Ogam et al., Lauriks, 572 C. Depollier, Application of the biot model to ultrasound in bone: direct 573 problem, IEEE transactions on ultrasonics, pp.571-574, 2008.

]. P. Laugier, G. Haiat, ]. A. Derode, V. Mamou, F. Padilla et al., Dynamic co- 577 herent backscattering in a heterogeneous absorbing medium: Application 578 to human trabecular bone characterization, Principles of Statistical Radio- 581 physics 4: Wave Propagation Through Random Media, pp.575-576, 2005.

. Photons, 585 [15] J. Turner, Elastic wave propagation and scattering in heterogeneous, 586 anisotropic media: Textured polycrystalline materials, p.587, 2007.

M. Cowan, J. H. Page, and P. Sheng, Ultrasonic wave transport in a system 589 of disordered resonant scatterers: Propagating resonant modes and hy- 590 bridization gaps, Physical Review B, vol.84, pp.1-9, 2011.

]. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic 592 Phenomena, Acoustic anisotropy in bovine cancellous bone, pp.591-593, 1995.

]. E. Bossy, F. Padilla, F. Peyrin, and P. Laugier, Three-dimensional simulation 596 of ultrasound propagation through trabecular bone structures measured 597 by synchrotron microtomography, Physics in medicine and biology 50, pp.2718-2740, 1998.

G. Ha¨?atha¨?at, F. Padilla, F. Peyrin, and P. Laugier, Fast wave ultrasonic propaga- 600 tion in trabecular bone: numerical study of the influence of porosity and 601 structural anisotropy, The Journal of the Acoustical Society of America, vol.602, pp.599-123, 2008.

]. Y. Nagatani, K. Mizuno, T. Saeki, M. Matsukawa, and T. Sakaguchi, 604 H. Hosoi, Numerical and experimental study on the wave attenuation 605 in bone?FDTD simulation of ultrasound propagation in cancellous bone, pp.603-606, 2008.

]. E. Bossy, M. Talmant, and P. Laugier, Three-dimensional simulations of ultra- 615 sonic axial transmission velocity measurement on cortical bone models, pp.614-616

A. Derode, V. Mamou, A. L. Tourin-]-d, and . Johnson, Influence of correlations between scat- 618 terers on the attenuation of the coherent wave in a random medium, Phys- 619 ical Review E 74 (2006) 036606 Equivalence between fourth sound in liquid He II at low 621 temperatures and the Biot slow wave in consolidated porous media, Ap- 622 plied Group velocity, phase velocity, and dispersion in human 624 calcaneus in vivo, Biot's theory of acoustic propagation in 627 porous media applied to aerogels and alcogels, Journal of non-crystalline 628 solids, pp.617-625, 1980.

]. S. Chaffa¨?chaffa¨?, F. Padilla, G. Berger, and P. Laugier, In vitro measurement of 630 the frequency-dependent attenuation in cancellous bone between 0, pp.629-631

C. C. Anderson, K. R. Marutyan, M. R. Holland, K. A. Wear, and J. G. Miller, 636 Interference between wave modes may contribute to the apparent negative 637 dispersion observed in cancellous bone, The Journal of the Acoustical 638 Society of America, pp.635-1781, 2008.