A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, 2001.

D. J. Brenner and E. J. Hall, Computed Tomography ??? An Increasing Source of Radiation Exposure, New England Journal of Medicine, vol.357, issue.22, pp.2277-2284, 2007.
DOI : 10.1056/NEJMra072149

K. Mannudeep and M. M. Michael, Strategies for CT Radiation Dose Optimization, Radiology, vol.230, pp.619-628, 2004.

M. Yazdi and L. Beaulieu, Artifacts in Spiral X-ray CT Scanners: Problems and Solutions, International Journal of Biological and Medical Sciences, vol.4, pp.135-139, 2008.

H. Watanabe, M. Kanematsu, and T. Miyoshi, Improvement of Image Quality of Low Radiation Dose Abdominal CT by Increasing Contrast Enhancement, American Journal of Roentgenology, vol.195, issue.4, pp.986-992, 2010.
DOI : 10.2214/AJR.10.4456

Y. Funama, K. Awai, O. Miyazaki, Y. Nakayama, T. Goto et al., Improvement of Low-Contrast Detectability in Low-Dose Hepatic Multidetector Computed Tomography Using a Novel Adaptive Filter, Investigative Radiology, vol.41, issue.1, pp.1-7, 2006.
DOI : 10.1097/01.rli.0000188026.20172.5d

J. Wang, H. Lu, J. Wen, and Z. Liang, Multiscale Penalized Weighted Least-Squares Sinogram Restoration for Low-Dose X-Ray Computed Tomography, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp.1022-1031, 2008.
DOI : 10.1109/IEMBS.2006.260669

E. Ehman, L. Guimarães, J. Fidler, and N. Takahashi, Noise Reduction to Decrease Radiation Dose and Improve Conspicuity of Hepatic Lesions at Contrast-Enhanced 80-kV Hepatic CT Using Projection Space Denoising, American Journal of Roentgenology, vol.198, issue.2, pp.405-411, 2012.
DOI : 10.2214/AJR.11.6987

Y. Chen, L. Luo, and W. Chen, Improving low-dose abdominal CT images by Weighted Intensity Averaging over Large-scale Neighborhoods, European Journal of Radiology, vol.80, issue.2, pp.42-49, 2011.
DOI : 10.1016/j.ejrad.2010.07.003

M. S. Lewic, B. A. Olshausen, and D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, pp.381-607, 1996.

M. S. Lewicki, Learning Overcomplete Representations, Neural Computation, vol.33, issue.2, pp.337-365, 2000.
DOI : 10.1109/18.119725

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. K. Delgado and J. F. Murray, Dictionary Learning Algorithms for Sparse Representation, Neural Computation, vol.15, issue.2, pp.349-396, 2003.
DOI : 10.1162/089976601300014385

D. L. Donoho and M. Elad, Maximal sparsity representation via l1 minimization, Proc. Nat. Aca. Sci, pp.2197-2202, 2003.

M. Elad and M. Aharon, Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries, IEEE Transactions on Image Processing, vol.15, issue.12, pp.3736-3745, 2006.
DOI : 10.1109/TIP.2006.881969

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Li, L. Fang, and H. Yin, An efficient dictionary learning algorithm and its application to 3-D medical image denoisin g, IEEE T-BME, vol.59, issue.2, pp.417-427, 2012.

R. Haralick and L. Shapiro, Computer and Robot Vision, 1992.