T. Mcinerney and D. Terzopoulos, Deformable models in medical image analysis: a survey, Medical Image Analysis, vol.1, issue.2, pp.91-108, 1996.
DOI : 10.1016/S1361-8415(96)80007-7

J. Duncan and N. Ayache, Medical image analysis: progress over two decades and the challenges ahead, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.1, pp.85-105, 2000.
DOI : 10.1109/34.824822

URL : https://hal.archives-ouvertes.fr/inria-00615100

D. Pham, C. Xu, P. , and J. , Current Methods in Medical Image Segmentation, Annual Review of Biomedical Engineering, vol.2, issue.1, pp.315-337, 2000.
DOI : 10.1146/annurev.bioeng.2.1.315

C. Kirbas and F. Quek, A review of vessel extraction techniques and algorithms, ACM Computing Surveys, vol.36, issue.2, pp.81-121, 2004.
DOI : 10.1145/1031120.1031121

D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-lea, A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes, Medical Image Analysis, vol.13, issue.6, pp.819-845, 2009.
DOI : 10.1016/j.media.2009.07.011

S. Wan and W. Higgins, Symmetric region growing, IEEE Trans. Image Process, vol.12, issue.9, pp.1007-1015, 2003.

T. Boskamp, D. Rinck, F. Link, B. Kmmerlen, G. Stamm et al., New Vessel Analysis Tool for Morphometric Quantification and Visualization of Vessels in CT and MR Imaging Data Sets, RadioGraphics, vol.24, issue.1, pp.287-297, 2004.
DOI : 10.1148/rg.241035073

J. Yi, J. Beom, and R. , A locally adaptive region growing algorithm for vascular segmentation, International Journal of Imaging Systems and Technology, vol.19, issue.4, pp.208-214, 2003.
DOI : 10.1002/ima.10059

C. Metz, M. Schaap, A. Van-der-giessen, T. Van-walsum, and W. Niessen, SEMI-AUTOMATIC CORONARY ARTERY CENTERLINE EXTRACTION IN COMPUTED TOMOGRAPHY ANGIOGRAPHY DATA, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.856-859, 2007.
DOI : 10.1109/ISBI.2007.356987

A. Miguel, M. Palomera-p´erez, M. P. Elena, and B. P. Hector, Parallel Multiscale Feature Extraction and Region Growing Application in Retinal Blood Vessel Detection, IEEE Trans. Information Technology in Biomedicine, vol.14, issue.2, pp.500-506, 2010.

S. Bock, C. Kühnel, T. Boskamp, and H. Peitgen, Robust vessel segmentation. in [Med, ImagingComputer-Aided Diagnosis] SPIE, vol.6915, 2008.
DOI : 10.1117/12.768555

O. Wink, W. Niessen, and M. Viergever, Multiscale Vessel Tracking, IEEE Transactions on Medical Imaging, vol.23, issue.1, pp.130-133, 2004.
DOI : 10.1109/TMI.2003.819920

H. Li and A. Yezzi, Vessels as 4-D Curves: Global Minimal 4-D Paths to Extract 3-D Tubular Surfaces and Centerlines, IEEE Transactions on Medical Imaging, vol.26, issue.9, pp.1213-1223, 2007.
DOI : 10.1109/TMI.2007.903696

F. Benmansour and L. D. Cohen, Fast Object Segmentation by Growing Minimal Paths from??a??Single Point on 2D or 3D Images, Journal of Mathematical Imaging and Vision, vol.16, issue.1, pp.209-221, 2009.
DOI : 10.1007/s10851-008-0131-0

URL : https://hal.archives-ouvertes.fr/hal-00691876

O. Friman, M. Hindennach, C. Kühnel, and H. O. Peitgen, Multiple hypothesis template tracking of small 3D vessel structures, Medical Image Analysis, vol.14, issue.2, pp.160-171, 2009.
DOI : 10.1016/j.media.2009.12.003