A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, 2001.

D. J. Brenner and E. J. Hall, Computed Tomography ??? An Increasing Source of Radiation Exposure, New England Journal of Medicine, vol.357, issue.22, pp.2277-2284, 2007.
DOI : 10.1056/NEJMra072149

R. Smith-bindman, J. Lipson, R. Marcus, and K. Kim, Radiation Dose Associated With Common Computed Tomography Examinations and the Associated Lifetime Attributable Risk of Cancer, Archives of Internal Medicine, vol.169, issue.22, pp.2078-2086, 2009.
DOI : 10.1001/archinternmed.2009.427

K. Mannudeep and M. M. Michael, Strategies for CT Radiation Dose Optimization, Radiology, vol.230, pp.619-628, 2004.

M. Yazdi and L. Beaulieu, Artifacts in Spiral X-ray CT Scanners: Problems and Solutions, International Journal of Biological and Medical Sciences, vol.4, pp.135-139, 2008.

H. Watanabe, M. Kanematsu, and T. Miyoshi, Improvement of Image Quality of Low Radiation Dose Abdominal CT by Increasing Contrast Enhancement, American Journal of Roentgenology, vol.195, issue.4, pp.986-992, 2010.
DOI : 10.2214/AJR.10.4456

J. Hsieh, Adaptive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise, Medical Physics, vol.36, issue.11, pp.2139-2147, 1998.
DOI : 10.1118/1.598410

J. Wang, H. Lu, J. Wen, and Z. Liang, Multiscale Penalized Weighted Least-Squares Sinogram Restoration for Low-Dose X-Ray Computed Tomography, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp.1022-1031, 2008.
DOI : 10.1109/IEMBS.2006.260669

E. Ehman, L. Guimarães, J. Fidler, and N. Takahashi, Noise Reduction to Decrease Radiation Dose and Improve Conspicuity of Hepatic Lesions at Contrast-Enhanced 80-kV Hepatic CT Using Projection Space Denoising, American Journal of Roentgenology, vol.198, issue.2, pp.405-411, 2012.
DOI : 10.2214/AJR.11.6987

C. Kamphuis and F. J. Beekman, Accelerated iterative transmission CT reconstruction using an ordered subsets convex algorithm, IEEE Transactions on Medical Imaging, vol.17, issue.6, pp.1101-1105, 1998.
DOI : 10.1109/42.746730

J. Nuyts, B. De-man, P. Dupont, M. Defrise, P. Suetens et al., Iterative reconstruction for helical CT: a simulation study, Physics in Medicine and Biology, vol.43, issue.4, pp.729-737, 1998.
DOI : 10.1088/0031-9155/43/4/003

E. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in Medicine and Biology, vol.53, issue.17, pp.4777-4807, 2008.
DOI : 10.1088/0031-9155/53/17/021

Y. Chen, Q. Feng, L. Luo, W. Chen, and P. Shi, Nonlocal Prior Bayesian Tomographic Reconstruction, Journal of Mathematical Imaging and Vision, vol.4, issue.4, pp.133-146, 2008.
DOI : 10.1007/s10851-007-0042-5

Y. Chen, L. Luo, and W. Chen, Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting nonlocal prior, Computerized Medical Imaging and Graphics, vol.33, issue.7, pp.495-500, 2009.
DOI : 10.1016/j.compmedimag.2008.12.007

M. Lubner, P. Pickhardt, J. Tang, and G. Chen, Reduced Image Noise at Low-Dose Multidetector CT of the Abdomen with Prior Image Constrained Compressed Sensing Algorithm, Radiology, vol.260, issue.1, pp.248-256, 2011.
DOI : 10.1148/radiol.11101380

P. Prakash, M. Kalra, and A. Kambadakone, Reducing Abdominal CT Radiation Dose With Adaptive Statistical Iterative Reconstruction Technique, Investigative Radiology, vol.45, issue.4, pp.202-210, 2010.
DOI : 10.1097/RLI.ob013e3181dzfeec

A. Silva, H. Lawder, A. Hara, J. Kujak, and W. Pavlicek, Innovations in CT Dose Reduction Strategy: Application of the Adaptive Statistical Iterative Reconstruction Algorithm, American Journal of Roentgenology, vol.194, issue.1, pp.191-199, 2010.
DOI : 10.2214/AJR.09.2953

M. Kalra, M. Maher, and M. Blake, Low-Dose CT of the Abdomen: Evaluation of Image Improvement with Use of Noise Reduction Filters???Pilot Study, Radiology, vol.228, issue.1, pp.251-56, 2003.
DOI : 10.1148/radiol.2281020693

M. Kalra, M. Maher, and M. Blake, Detection and Characterization of Lesions on Low-Radiation-Dose Abdominal CT Images Postprocessed with Noise Reduction Filters, Radiology, vol.232, issue.3, pp.791-797, 2004.
DOI : 10.1148/radiol.2323031563

Y. Funama, K. Awai, O. Miyazaki, Y. Nakayama, T. Goto et al., Improvement of Low-Contrast Detectability in Low-Dose Hepatic Multidetector Computed Tomography Using a Novel Adaptive Filter, Investigative Radiology, vol.41, issue.1, pp.1-7, 2006.
DOI : 10.1097/01.rli.0000188026.20172.5d

Y. Chen, L. Luo, and W. Chen, Improving low-dose abdominal CT images by Weighted Intensity Averaging over Large-scale Neighborhoods, European Journal of Radiology, vol.80, issue.2, pp.42-49, 2011.
DOI : 10.1016/j.ejrad.2010.07.003

Y. Chen, Z. Yang, Y. Hu, G. Yang, L. Luo et al., Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means, Physics in Medicine and Biology, vol.57, issue.9, pp.2667-2688, 2012.
DOI : 10.1088/0031-9155/57/9/2667

URL : https://hal.archives-ouvertes.fr/inserm-00677979

M. S. Lewic, B. A. Olshausen, and D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, vol.381, pp.607-609, 1996.

M. S. Lewicki, Learning Overcomplete Representations, Neural Computation, vol.33, issue.2, pp.337-365, 2000.
DOI : 10.1109/18.119725

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. K. Delgado and J. F. Murray, Dictionary Learning Algorithms for Sparse Representation, Neural Computation, vol.15, issue.2, pp.349-396, 2003.
DOI : 10.1162/089976601300014385

D. L. Donoho and M. Elad, Optimally sparse representation in general (nonorthogonal) dictionaries via ??1 minimization, Proceedings of the National Academy of Sciences, vol.100, issue.5, pp.2197-2202, 2003.
DOI : 10.1073/pnas.0437847100

M. Elad and M. Aharon, Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries, IEEE Transactions on Image Processing, vol.15, issue.12, pp.3736-3745, 2006.
DOI : 10.1109/TIP.2006.881969

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Mairal, M. Elad, and G. Sapiro, Sparse Representation for Color Image Restoration, IEEE Transactions on Image Processing, vol.17, issue.1, pp.53-69, 2007.
DOI : 10.1109/TIP.2007.911828

J. Mairal, G. Sapiro, and M. Elad, Learning Multiscale Sparse Representations for Image and Video Restoration, Multiscale Modeling & Simulation, vol.7, issue.1, pp.214-241, 2008.
DOI : 10.1137/070697653

J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, Robust Face Recognition via Sparse Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.2, pp.210-227, 2008.
DOI : 10.1109/TPAMI.2008.79

S. Ravishankar and Y. Bresler, MR Image Reconstruction From Highly Undersampled k-Space Data by Dictionary Learning, IEEE Transactions on Medical Imaging, vol.30, issue.5, pp.1028-1041, 2011.
DOI : 10.1109/TMI.2010.2090538

Q. Xu, H. Y. Yu, X. Q. Mou, L. Zhang, J. Hsieh et al., Low-Dose X-ray CT Reconstruction via Dictionary Learning, IEEE Transaction on Medical Imaging, vol.31, pp.1682-1697, 2012.

S. Li, L. Fang, and H. Yin, An efficient dictionary learning algorithm and its ication to 3-D medical image denoising, IEEE Transaction on Biomedical Engineering, vol.59, pp.417-427, 2012.

. Mansson, ViewDEX 2.0: a Java-based DICOM-compatible software for observer performance studies, Proc SPIE, vol.7263, pp.72631-72632, 2009.