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Abstract: In the last decade, joint modeling research has expanded very rapidly in bio-

statistics and medical research. This type of models enables the simultaneous study of

a longitudinal marker and a correlated time-to-event. Among them, the shared random-

effect models that define a mixed model for the longitudinal marker and a survival model

for the time-to-event including characteristics of the mixed model as covariates received

the main interest. Indeed, they extend naturally the survival model with time-dependent

covariates and offer a flexible framework to explore the link between a longitudinal

biomarker and a risk of event.

The objective of this paper is to briefly review the shared random-effect model method-

ology and detail its implementation and evaluation through a real example from the study

of prostate cancer progression after a radiation therapy. In particular, different specifica-

tions of the dependency between the longitudinal biomarker, the prostate-specific antigen

(PSA), and the risk of clinical recurrence are investigated to better understand the link

between the PSA dynamics and the risk of clinical recurrence. These different joint models

are compared in terms of goodness-of-fit and adequation to the joint model assumptions

but also in terms of predictive accuracy using the expected prognostic cross-entropy. In-

deed, in addition to better understand the link between the PSA dynamics and the risk

of clinical recurrence, the perspective in prostate cancer studies is to provide dynamic

prognostic tools of clinical recurrence based on the biomarker history.

Keywords: Joint models, Shared random-effect models, Dynamic predictions, Prognos-

tic cross-entropy, Predictive accuracy, Prostate cancer.
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Résumé: Dans la dernière décennie, la recherche en modélisation conjointe s’est développée

très rapidement dans le domaine des biostatistiques et de la recherche médicale. Ce

type de modèles permet d’étudier simultanément un marqueur longitudinal et un temps

d’événement corrélés. Parmi eux, les modèles à effets aléatoires partagés, qui définissent

un modèle mixte pour le marqueur longitudinal et un modèle de survie pour le temps

d’événement incluant les caractéristiques du modèle mixte comme variables explicatives,

ont reu le plus d’attention. En effet, ces modèles étendent naturellement le modèle de

survie avec variables explicatives dépendantes du temps et offrent un cadre flexible pour

explorer le lien entre le biomarqueur longitudinal et le risque d’événement.

L’objectif de cet article est de passer brièvement en revue la méthodologie du modèle à

effets aléatoires partagés et de détailler son implémentation et son évaluation à travers un

exemple réel d’étude de progression de cancer de la prostate après une radiothérapie. En

particulier, différentes spécifications de la dépendance entre le biomarqueur longitudinal,

l’antigène spécifique de la prostate (PSA), et le risque de rechute clinique sont investiguées

pour bien comprendre le lien entre la dynamique du PSA et le risque de rechute clinique.

Ces différents modèles conjoints sont comparés en termes de qualité d’ajustement et

d’adéquation aux hypothèses du modèle conjoint mais aussi en termes de pouvoir prédictif

en utilisant la cross-entropie pronostique. En effet, en plus de mieux comprendre le lien

entre la dynamique de PSA et le risque de rechute clinique, la perspective dans les études

sur le cancer de la prostate est de fournir des outils pronostiques dynamiques de rechute

clinique basés sur toute l’histoire du biomarqueur.

Mots clés: Modèles conjoints, Modèles à effets aléatoires partagés, Prédictions dy-

namiques, Cross-entropie pronostique, Pouvoir prédictif, Cancer de la prostate.
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1 Introduction

In cohort studies, time-to-event data and repeated measures of biomarkers data are of-

ten collected for each subject. There exist standard methods for separately analyzing

these data; mixed models16 are used to describe the biomarker repeated measures and

assess the association with covariates while survival models, mainly proportional hazard

models3, are used to evaluate the risk of the event and the effect of its predictors. These

approaches are however not optimal. First, these processes are usually dependent so

that separated analyses may lead to biased inference, and second, interest is frequently

in the understanding of their association so that the two processes need to be modeled

simultaneously.

To assess the relationship between a longitudinal biomarker and a time-to-event, an

intuitive model would be the proportional hazard Cox model3 with the biomarker as a

standard time-dependent covariate. But this technique is not adapted with biomarker

repeated data. Indeed, first the Cox model assumes that the time-dependent covariate

is external (or exogenous) which means that the value of the covariate at time t is not

affected by the occurrence of an event at time u, with t > u15. This is not the case with

biomarkers that constitute a typical example of internal (or endogenous) time-dependent

covariate. Second, the Cox model assumes that the time-dependent covariate is observed

at all the event times, which is most always not the case in practice.To solve this problem,

missing values at the event times can be imputed using the LOCF (Last Observation

Carried Forward) method that replaces an unobserved value at an event time by the most

recent observed value. However, this method can strongly bias the estimates31, especially

with irregularly and infrequent measures of the biomarker. Finally, the standard Cox

model assumes that the time-dependent covariate is measured without any error where

as the observed biomarker is noisy measure.

To remedy this, joint models have been developed. They aim at modeling simulta-
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neously the longitudinal biomarker and time-to-event processes, and at characterizing

their relationship. As a consequence, they provide an interesting framework to (i) evalu-

ate the longitudinal biomarker trajectory and its association with covariates without the

bias introduced by the informative time-to-event, (ii) evaluate the risk of event and its

association with covariates, including the longitudinal biomarker data and (iii) directly

explore the association between the longitudinal and survival processes. The principle of

joint models is to model the biomarker repeated measures using a mixed model, to model

the risk of event using a survival model and to link the two models using a common

latent structure5–9–35. This common latent structure captures the association between

the processes so that the two processes are conditionally independent given the latent

structure.

There exist two kinds of joint models for longitudinal and time-to-event data: the

shared random-effect models (SREM) and the joint latent class models (JLCM). The

SREM extends directly the idea of the survival model with time-dependent covariates by

considering as covariates some characteristics of the mixed model defined for the longitu-

dinal biomarker5–9–13–14–30–31–34–35. These characteristics are functions of the individual

random-effects of the mixed model that capture the individual deviations to the mean

trajectory of the biomarker. The most classical example of shared characteristic is the

individual current error-free level of the biomarker predicted from the mixed model that

is included as a time-dependent covariate in the survival model5–35. Another example is

to include in the survival model directly the vector of random-effects. The alternative,

the JLCM, relies on a different idea. It assumes that the population is heterogeneous and

can be divided in a finite number of homogeneous subgroups (or classes), each class being

characterized by a specific trajectory of the biomarker and a specific risk of event19–21.

The latent class structure can be seen as a latent stratification that entirely captures the

dependency between the two processes. See Proust-Lima et al.20 for a review of JLCM.
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In the last decade, joint modeling research has expanded very rapidly in biostatistics

and medical research with a preference for the SREM approach. Indeed, it extends nat-

urally the survival model with time-dependent covariates and offers a flexible framework

to explore the link between a longitudinal biomarker and a risk of event. Besides, it

allows to improve the efficiency in assessment of treatment effects and other prognos-

tic factors13. Different extensions of these models have been developed; with multiple

events11, or multiple longitudinal data27, or multivariate longitudinal and multivariate

survival data1, or with cured fraction17–36–37, or in presence of data clustering with com-

mon frailty23, or with a proportional cumulative hazard time-to-event submodel instead

of standard proportional hazard4.

In addition to evaluating the association between a longitudinal and event process,

joint models (JLCM and SREM) have also allowed very recently the development of a

new type of prediction tools that incorporate the repeated biomarker measures to pre-

dict the risk of event20–21–25. Because of the longitudinal nature of the biomarker, these

predictive tools are dynamic: whatever the time s, they provide the risk of event from s

given all the information collected until s so that, in practice, the dynamic prediction can

be systematically updated when new information is collected. As a consequence, these

dynamic predictive tools potentially provide more accurate predictions than standard

prognostic tools based only on information at baseline. Dynamic prognostic tools are of

particular interest in chronic diseases such as cancers for predicting a clinical event (re-

currence, death,...) where in addition to standard prognostic factors, repeated measures

of a biomarker are collected for monitoring the patients21–37.

In this context, the aim of this paper is to review briefly the SREM methodology

and detail its implementation and evaluation through a real example from the study of

prostate cancer progression after a radiation therapy. In particular, different specifica-

tions of the dependency between the longitudinal biomarker, the prostate-specific antigen
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(PSA), and the risk of clinical recurrence are investigated to better understand the link

between the PSA dynamics and the risk of clinical recurrence. These different joint models

are compared in terms of goodness-of-fit and adequation to the joint model assumptions

but also in terms of predictive accuracy. Indeed, in addition to better understand the

link between the PSA dynamics and the risk of event, the perspective in prostate cancer

studies is to provide powerful dynamic prognostic tools of clinical recurrence based on

the biomarker history.

The paper is organized as follows. Section 2 presents the SREM model and its estima-

tion. Section 3 focuses on dynamic prognostic tools derived from these models and their

validation using a measure of predictive accuracy. The method is applied to prostate

cancer progression in section 4. Finally, section 5 concludes.

2 Shared random-effect models

For subject i, i = 1, ..., N , we note T ∗i the time to the event of interest and Ci the

censoring time. We observe the time Ti = min(T ∗i , Ci) and Ei = 1{T ∗
i ≤Ci}, the indicator

of event. We also observe Yi = (Yi (ti1) , ..., Yi (tini
)), the ni-vector of repeated measures

of the biomarker collected intermittently at times (ti1, ..., tini
) until the observed time Ti.

In general, covariates are denoted by X. For clarity, we distinguish in the following XLi

the matrix of (possibly time-dependent) covariates involved in the longitudinal submodel

and XSi the vector of time-independent covariates involved in the survival submodel.

2.1 Longitudinal submodel

Repeated measures of the biomarker are analyzed by a linear mixed model16. Specifically,

we assume that the repeated measures Yi(tij) are noisy measures of Y ∗i (tij) the true

unobserved biomarker value for j = 1, ..., ni. We model the mean change over time of
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Y ∗i (tij) by taking into account the correlation within the biomarker repeated measures of

a same subject:

Yi(tij) = Y ∗i (tij) + εi(tij)

= XLi(tij)
T β + Zi(tij)

T bi + εi(tij) (1)

where XLi(tij) and Zi(tij) are p-vector and q-vector of time-dependent covariates associ-

ated respectively with the p-vector of fixed effects β and the q-vector of Gaussian random

effects bi with mean 0 and variance-covariance matrix B. In the following, we will also use

XLi and Zi the design matrices with respectively XLi(tij)
T and Zi(tij)

T as row vectors j

(j = 1, ..., ni). In (1), the fixed part XLi β represents the mean trajectory of the biomarker

over time while the random part Zi bi defines the individual deviation relative to the mean

trajectory. The vector of errors of measurements is εi = (εi(ti1), · · · , εi(tini
))T . We as-

sume εi are independent and follow a multivariate Gaussian distribution of mean 0 and

diagonal variance-covariance matrix Σi = σ2Ini
; εi and bi are independent. In addition

to the independent errors, autocorrelated errors could be included to further take into

account the correlation between the repeated measures for a same subject. For example,

Henderson et al.9 considered a stationary Gaussian process with mean zero while Wang

and Taylor considered33 an integrated Ornstein-Uhlenbeck stochastic process. Originally,

Tsiatis et al.32, Faucett and Thomas5 and Wulfsohn and Tsiatis35 used a linear mixed

model with only a random intercept and a random slope but any functions of time can

be considered in XLi(tij) and Zi(tij) to capture at best the trajectory of the biomarker.
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2.2 Survival submodel

The risk of event could be modelled using any survival model but in practice, proportional

hazard models are mostly considered and defined as follows:

λi (t|XSi, bi) = λ0 (t) eX
T
Si γ+h(bi,t)

T η (2)

where λ0 (t) is the baseline hazard function, γ is the r-vector of coefficients defining the

association between the r-vector of covariates XSi (that can be time dependent) and the

survival time, and h(bi, t) is a multivariate function of the random-effects bi defined in (1)

and associated with the vector of parameters η. The coefficients η measure the association

between the longitudinal and survival processes while h(bi, t) defines the nature of the

dependence between the two processes. Different functions h(bi, t) can be defined. Usual

examples include the current true level of the biomarker (h(bi, t) = Y ∗i (t))4–5–13–35, the cur-

rent slope of the biomarker (h(bi, t) = ∂Y ∗i (t)/∂t), both (h(bi, t) = (Y ∗i (t), ∂Y ∗i (t)/∂t)T )37

or directly the individual deviations (h(bi, t) = bi)
14. In the application, we will go

back on these functions and detail more specific ones in the context of prostate cancer

progression.

Other types of dependency can be assumed. For example, instead of considering

strictly random-effects shared between the two submodels, Henderson et al.9 considered

two correlated zero-mean Gaussian processes, one for each submodel with the assumption

that the correlation between the longitudinal and the survival processes were entirely

captured by the correlation between the two zero-mean Gaussian processes.

In the present paper, we chose to not detail further this option and concentrate on

models where the dependency between the submodels is captured by standard random-

effects and functions of them.
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2.3 Maximum likelihood estimation

Shared random-effect models can be estimated within the maximum likelihood framework

by considering the joint likelihood from the two submodels.

Let θ be the whole vector of parameters defined in (1) and (2). Using the assumption

of independence between the longitudinal and the survival processes conditionally to the

random effects, the joint log-likelihood of the observed data is:

l (θ) = log

[
N∏
i=1

(∫
bi

fY (Yi|XLi, bi; θ) fT (Ti|XSi, bi; θ) fb (bi; θ) dbi

)]

=
N∑
i=1

log

(∫
bi

fY (Yi|XLi, bi; θ) λi (Ti|XSi, bi; θ)
Ei Si (Ti|XSi, bi; θ) fb (bi; θ) dbi

)
(3)

where fb and fY are multivariate Gaussian density functions of b and Y with respectively

mean 0 and XLi β+Zi bi, and variance-covariance matrix B and Σi; λi(Ti|XSi, bi; θ) is the

hazard function defined in (2) and taken at the observed time Ti and Si(Ti|XSi, bi; θ) =

e−
∫ Ti
0 λi(t|XSi,bi;θ)dt is the derived survival function.

From this, the maximum likelihood estimates can be obtained by iterative algorithms

such as EM or Newton-Raphson algorithm9–24–28–35. This estimator has good asymptotic

properties as shown by Zeng and Cai38. We note that other authors used a bayesian

approach to estimate these joint models5–8–12–33.

Equation (3) involves two integrals that do not have analytic solutions. They are

usually approximated by numerical integration with Gauss-Hermite and Gauss-Kronrod

quadratures for the integrals over respectively the random effects and the survival func-

tion9–24–35. The numerical approximations of the integrals, mostly the Gauss-Hermite

one for the random effects, slow the calculations. Indeed, the integral over the random-

effects is usually multidimensional (size q). When q remains small (less than 3), the
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Gauss-Hermite quadrature remains the standard method but in higher dimension set-

tings, alternative methods may be preferred to reduce the computational time like the

Laplace method as proposed by Rizopoulos et al.28 or a Monte Carlo method. We note

that the structure of B does not intervene in the computational complexity, only the

number q of random-effects is limiting.

To improve the accuracy and reduce the number of nodes in Gaussian quadratures,

adaptive versions have been proposed. They consist in centering and rescaling the inte-

gral18 around its modal value, so that the nodes are systematically placed at the optimum

position. This technique remains however time consuming as it requires a subject-and-

iteration-specific optimization to define the optimum position. To retain the same pre-

cision but simplify the numerical aspect, Rizopoulos in26 proposed a pseudo-adaptive

version where the integral is centered and rescaled according to the posterior distribution

of the random-effects defined in the linear mixed model in (1) but estimated separately

and once for all in a first step.

There exist two R packages to estimate SREM: joineR

(http://cran.r-project.org/web/packages/joineR) and JM24. In this work, we used di-

rectly the JM program online, or modified the JM source code when necessary to include

specific functions h(bi, t). We used a Newton-Raphson algorithm for the maximization of

the likelihood and a pseudo-adaptive Gaussian quadrature rule with nine points to ap-

proximate the integral over the random effects in (3)26. The variance-covariance matrix

of the parameters V̂(θ̂) was estimated by the inverse of the Hessian matrix.
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3 Dynamic predictions

3.1 Individual prediction

Individual dynamic predictions of event can be derived from any joint model. They

consist in the individual predicted probability of event between times s and s + t given

the biomarker data Y
(s)
i = {Yi(tij), j = 1, ..., ni, such as tij ≤ s} collected until time s

and the matrix of explanatory covariates X
(s)
Li = {XLi(tij), j = 1, ..., ni, such as tij ≤ s}

and XSi
20–21–25. In a SREM, this reduces to:

pi(s, t; θ) = P
(
Ti ≤ s+ t|Ti ≥ s, Y

(s)
i , X

(s)
Li , XSi; θ

)

=

∫
bi

fY (s)

(
Y

(s)
i |X

(s)
Li , bi; θ

)
[Si (s|XSi, bi; θ)− Si (s+ t|XSi, bi; θ)] fb (bi; θ) dbi∫

bi

fY (s)

(
Y

(s)
i |X

(s)
Li , bi; θ

)
Si (s|XSi, bi; θ) fb (bi; θ) dbi

(4)

where fb and Si are defined in section 2.3, and fY (s) is the multivariate Gaussian den-

sity function with mean X
(s)
Li β + Z

(s)
i bi and variance-covariance matrix Σ

(s)
i , superscript

(s) meaning that only information before time s is considered.

3.2 Dynamic prognostic tool

Once a joint model is estimated, dynamic prognostic tools can be constructed from its

estimates θ̂ and the variance of its estimates V̂(θ̂).

At a time s of prediction, for a new subject i with biomarker history Y
(s)
i and covariates

X
(s)
Li and XSi, a dynamic prognostic tool can be computed as the predicted probability

of event defined in (4) and computed at the point estimates θ̂. However, as this dynamic

prognostic tool is an estimate, its uncertainty should be taken into account. This can
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be done by approximating the posterior distribution of pi(s, t; θ) defined in (4) using a

Monte-Carlo method. It consists in generating a large set of θ(d) (d = 1, ..., D) from the

asymptotic distribution of the estimates N
(
θ̂, V̂(θ̂)

)
, and compute pi(s, t; θ

(d)). The

median of pi(s, t; θ
(d)) gives a point estimate over the D draws while the 2.5% and 97.5%

percentiles give the 95% confidence bands20–21. Using also a Monte-Carlo method to

generate a large set of θ(d) (d = 1, ..., D), Rizopoulos25 proposed to generate random-

effects b
(d)
i from their posterior distribution and compute the predicted probability of

event given b
(d)
i instead of computing directly pi(s, t; θ

(d)).

3.3 Evaluation of the predictive accuracy

To evaluate the predictive accuracy of dynamic prognostic tools, different measures can

be used. The quadratic error of prediction called the Brier score and developed in

survival models6–7 was extended to the dynamic setting of joint models10–20–21–29. It

consists in the expectation of the squared difference between the observed status of

event and the predicted survival. The methodology of the area under the ROC curve

(AUC) was also extended to the longitudinal setting25–39 to assess how a longitudi-

nal biomarker discriminated between patients with low and high risks of event. Re-

cently, another predictive accuracy measure was developed from the information theory.

This is the expected prognostic observed cross-entropy (EPOCE)2–20 which is defined as

E
[
− log

(
fT |Y (s),T ∗≥s(T )

)
|T ∗ ≥ s

]
, that is the expectation of the log of the conditional

density fT |Y (s),T ∗≥s of the time of event given the history of the marker until the time of

prediction s.

One major problem when evaluating the predictive performances of a model is the

expected over-optimism of the performances when estimated on the data on which the

model was estimated. One way to counter that is to validate the model on external data

but this is not always possible in practice. An alternative is to compute the measure on
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the estimating data but using a cross-validation technique7. However this is numerically

too intensive with joint models. In contrast to the AUC or Brier score, a formula approx-

imating the leave-one-out cross-validation was proposed by Commenges et al.2 for the

EPOCE estimator so that this estimator provides a correct measure of predictive accu-

racy that can be directly computed on the estimating data in a very short computation

time.

In this context, we chose to focus in this work only on the EPOCE to evaluate the

predictive accuracy of the joint models on the estimating data by correcting the over-

optimism. The approximated cross-validated estimator of the EPOCE called CVPOLa is

defined by:

CVPOLa(s) = −
1

Ns

Ns∑
i=1

Fi

(
θ̂, s
)

+N Trace
(
H−1Ks

)
(5)

where Ns is the number of subjects still at risk at time s, Fi

(
θ̂, s
)

is the individual

contribution to the conditional log-likelihood and is defined below in (6), H is the Hessian

matrix of the joint log-likelihood defined in (3), and Ks = 1
Ns(N−1)

N∑
i=1

1{Ti≥s}v̂i(s)d̂
T
i with

v̂i(s) and d̂Ti the gradients of the individual contributions respectively to the conditional

log-likelihood computed in s using only Y
(s)
i and defined in (6), and the joint log-likelihood

defined in (3) and computed using all measurements of Yi of subject i. These gradients

are computed numerically using finite differences. In (5), the individual contribution to

the conditional log-likelihood of the time-to-event given that the subject is still at risk at

time s and given his biomarker history until s is:

Fi

(
θ̂, s
)

= 1{Ti≥s} log


∫
bi

fY

(
Y

(s)
i |X

(s)
Li , bi; θ

)
λ (Ti|XSi, bi; θ)

Ei Si (Ti|XSi, bi; θ) fb (bi; θ) dbi∫
bi

fY

(
Y

(s)
i |X

(s)
Li , bi; θ

)
Si (s|XSi, bi; θ) fb (bi; θ) dbi


(6)
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The CVPOLa has two components. The first part

− 1

Ns

Ns∑
i=1

Fi

(
θ̂, s
) estimates

the apparent cross-entropy in the sample while the second term (N Trace (H−1Ks)) pro-

vides the correction for over-optimism computed by the approximated leave-one-out cross-

validation. As a measure of risk, the lower the CVPOLa, the better the predictive ac-

curacy of the model. Difference in EPOCE can also be computed with a 95% tracking

interval2 making possible the comparison of predictive accuracy between two models.

We note that for this work, the predictive accuracy was assessed in the entire remain-

ing window of time from the time of prediction s but the EPOCE estimate could also be

computed to evaluate the predictive accuracy of a model in a shorter window of horizons

in order to focus on the ability to predict the event in the next τ years.

4 Application to prostate cancer data

The objective of this application was to better understand the dependency between the

dynamics of the prostate specific antigen (PSA) and the risk of clinical recurrence after

a first treatment by radiation therapy for a localized prostate cancer, and to explore the

predictiveness of joint models based on the PSA dynamics.

Through this application, we also aimed at showing how shared random-effect models

could be used in practice, how their goodness-of-fit could be evaluated, and how dynamic

predictive tools could be derived and validated.

4.1 Description of the dataset

The data come from an hospital cohort of the University of Michigan that included

patients treated with external beam radiation therapy (EBRT) for a localized prostate

cancer and followed-up from 1988 to 2004. The present sample is constituted of 459 men
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among whom 74 (16.1%) had a clinical recurrence defined as any distant metastases,

nodal recurrence or any palpable or biopsy-detected local recurrence three years or later

after radiation, any local recurrence within three years of EBRT if the last PSA value

was over 2ng/ml and death from prostate cancer. PSA measurements were collected

from the end of EBRT to clinical recurrence or lost to follow-up. Patients included in

the sample were required to have at least 1-year follow-up without clinical recurrence,

did not initiate any second treatment during the follow-up and had at least two PSA

measurements before the end of follow-up.

Three main prognostic factors known at diagnosis were considered in the analysis and

included in the vector of time-independent covariates Xi:

1. The level of PSA at diagnosis was defined as a continuous covariate in the log scale;

The median was 2.1 (in log of ng/ml) with an interquartile range of [1.7, 2.6] (in

log of ng/ml)

2. T-stage indicates how far the cancer has developed; it ranges from 1 when the

cancer is small and contained within the prostate, to 4 when the cancer has spread

to other organs, or bones. In the application, T-stage was split in 2 categories, 3-4

versus 1-2, with respectively 8.9% and 91.1% of the patients in each category.

3. The Gleason score quantifies the aggressiveness of prostate cancer; it ranges from

2 to 10, 10 indicating the higher aggressiveness. In the application, Gleason score

was considered in 3 categories, 7 and 8-10 versus 2-6, with respectively, 37.7%, 7.4%

and 54.9% of the patients.

Patients had a median follow-up time of 5.2 years with an interquartile range of [2.7, 7.7]

years and a median time to clinical recurrence of 2.8 years with an interquartile range of

[1.9, 4.3] years after EBRT.
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PSA repeated measures were analyzed in the logarithmic scale log (PSA+ 0.1) to

satisfy the normality assumption of the linear mixed model. In the following, the term

biomarker and log PSA will refer to log (PSA+ 0.1). Figure 1 presents the individual

observed trajectories of log PSA according to the occurrence of a clinical recurrence

during the follow-up. In the two subgroups, the log PSA trajectory is characterized by

a very rapid PSA drop in the first year after EBRT and a long-term increase. However,

the intensity of the long-term increase differs greatly according to the subgroup: patients

who recurred tend to have a faster PSA rise than patients who did not.

[Figure 1 about here.]

4.2 Specification of the joint models

To describe the dynamics of the PSA after EBRT and its link with time to clinical

recurrence, we explored different SREM models that only differed by the function h(bi, t)

assumed to summarize the dependency between the PSA dynamics and the risk of clinical

recurrence.

The log PSA trajectory was systematically described by the following linear mixed

model:

Yi(t) = log (PSA+ 0.1)

= Y ∗i (t) + εi(t)

=
(
µ0 +XT

i β0 + b0i
)

+
(
µ1 +XT

i β1 + b1i
)
f1(t) +

(
µ2 +XT

i β2 + b2i
)
t+ εi(t),∀t ∈ R+

(7)

The biphasic trajectory of log PSA was captured by f1(t) = ((1 + t)−1.5 − 1) that
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modeled the initial decline of log PSA after the end of EBRT and t that modeled the

linear long-term rise in log PSA. Proust-Lima et al.22 showed through a pooled anal-

ysis of five large cohorts, by profile maximum likelihood technique, that these func-

tions correctly captured the nonlinear biphasic PSA trajectory after EBRT. The vector

µ = (µ0, µ1, µ2) represents the intercepts in the different phases; the vector of random

effects bi = (bi0, bi1, bi2) is multivariate Gaussian with vector of mean 0 and unstructured

variance-covariance matrix. We remind that the vector Xi includes the three baseline

prognostic factors.

The time-to-recurrence was systematically modeled using the following proportional

hazard model:

λi (t|Xi, bi) = λ0 (t) eX
T
i γ+h(bi,t)

T η (8)

in which the log-baseline hazard, log (λ0(t)) was approximated using B-splines with three

internal knots placed at the quartiles of the observed event times.

We explored the nature of the dependency between the log PSA dynamics described

in (7) and the risk of clinical recurrence described by considering the following functions

for h(bi, t) in (8):

(a) Current level of log PSA: ha(bi, t) = Y ∗i (t).

This is the most classical function assumed in a SREM. It assumes that the current

true level of the biomarker is predictive of the risk of event.

(b) Current slope of log PSA: hb(bi, t) = ∂Y ∗i (t)/∂t.

This model assumes that the current change of the biomarker is predictive of the

risk of event.

(c) Current level and current slope of log PSA: hc(bi, t) = (Y ∗i (t), ∂Y ∗i (t)/∂t)T .
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With hc(bi, t), the risk of event is linked both to the current true level of the

biomarker and the current change in the biomarker.

(d) Lagged level and lagged slope of log PSA: hd(bi, t) = (Y ∗i (t− 1), ∂Y ∗i (t− 1)/∂t)T .

Instead of considering that the current biomarker information explains the risk of

event, a lag can be introduced as in hd(bi, t) where we assumed a latency of 1 year

between the log PSA characteristics and their impact on the risk of event.

(e) Transformed current level of log PSA: he(bi, t) = Γ (Y ∗i (t)).

A SREM with ha(bi, t) = Y ∗i (t) makes a log-linear assumption between the cur-

rent true level and the risk of event. To relax this assumption, a transforma-

tion of the current level can be considered with function Γ. In the PSA progres-

sion after EBRT, Proust-Lima et al.22 found that the transformation Γ (Y ∗i (t)) =

logit−1 ((Y ∗i (t)− 0.71) /0.44) better modeled the effect of the current level of PSA

and the risk of recurrence.

(f) Transformed current level and current slope of PSA: hf(bi, t) = (Γ (Y ∗i (t)) , ∂Y ∗i (t)/∂t)T .

To relax both models (c) and (e), the most adapted transformed current true level

of log PSA and the current slope of log PSA can be simultaneously considered to

describe the impact of PSA dynamics on the risk of recurrence.

(g) Random effects: hg(bi, t) = (b0i, b1i, b2i)
T .

Instead of considering some functions of the level of the biomarker, the individual

deviations can be directly included in the survival model to explain the impact

of the PSA dynamics. In that case, the function hg(bi) linking both processes is

time-independent.

We only considered the seven functions above but other functions h(bi, t) could be

investigated according to the question of research.
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4.3 Joint models estimations

[Table 1 about here.]

Estimation of these seven models ((a) - (g)) is summarized in Table 1 with goodness-

of-fit statistics and estimates of parameters η that summarize the link between the PSA

dynamics and the risk of recurrence adjusted for other prognostic factors. Whatever

the assumed dependency between the PSA dynamics and the risk of recurrence, the

seven models concluded to a significant association between the two processes. However,

according to the Akaike criterion, the goodness-of-fit of the models varied substantially.

Models (a) and (b) underlined that the current true level of log PSA and the current

slope of log PSA were associated with the risk of recurrence, higher current level or slope

predicting higher risk of recurrence. Model (c) showed that these two features of PSA

dynamics were independent predictors of the risk of recurrence. Their effects were partly

reduced when considered simultaneously as predictors of the risk of recurrence but they

both remained highly significant (p < 0.0001 and p < 0.0001).

Model (d) illustrates how some lag in the effect of a time-dependent covariate can be

introduced in joint models, with the exploration here of a latency of 1 year between the

characteristics of the PSA trajectory and their impact on the risk of recurrence. In the

present example, the AIC was better when assuming an association between the risk of

recurrence and the level and slope of log PSA at the current time (model (c)) rather than

one year before (model (d)). However, the parameter estimates were roughly the same

in the two models.

Models (a), (c) and (d) assume a log-linear effect of the level of log PSA on the risk

of recurrence, which means that the effect of 1 additional unit of log PSA is constant

whatever the level of log PSA. As suggested by previous works22, a non-linear effect of

the current level of log PSA was explored via a logistic transformation in model (e) and
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combined with a joint effect of the current slope in model (f). From the seven models

investigated, the latter model assuming a dependency via the transformed current log

PSA level and the current slope provided the best fit with an improvement of 46 points

of AIC compared to the model assuming a dependency via the crude current level of log

PSA in addition to the slope. The logistic transformation makes the effect of the level

of PSA increase in the range 0 to 4 ng/mL, and become maximal around 4ng/mL. This

result is in accordance with clinical assumptions regarding the range of meaningful PSA

levels. Let note that when considering the logistic transformation of the level of log PSA

(model (f)) in the survival model instead of the crude true log-PSA level (model (c)), the

association between the current slope and the risk of recurrence was still significant but

its intensity was divided by two.

Finally, instead of assuming a dependency of the risk of recurrence on the PSA dynam-

ics via the transformation and/or derivative of the current level of log PSA, the last model

(g) included the individual deviations of the PSA dynamics, that are the random-effects,

as predictors of the risk of recurrence in the survival model. Although the model used 1

additional parameter to summarize the dependency, it gave a worse fit than the models

including the current slope of log PSA and the transformed (or crude) current level of

log PSA with an AIC higher by 52.3 points compared to model (f) (and respectively 6.3

points compared to model (c)). Interestingly, as a linear long-term trend was assumed

for the log PSA trajectory in (7), ∂Y ∗i (t)/∂t reduces approximately to
(
µ2 +XT

i β2 + b2i
)

after a few years, and effects of ∂Y ∗i (t)/∂t and b2i adjusted for Xi in the survival model

can be quantitatively compared. So with an effect estimated around 4, model (g) gives

a larger impact of the long-term slope on the risk of recurrence than models (c) and (f)

with estimates of the effect of the long-term slopes around 2 and 1 respectively.
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4.4 Goodness-of-fit assessment

[Figure 2 about here.]

In joint models, like in all statistical models, model assumptions can be checked with a

comparison of the predicted versus the observed values and an inspection of the residuals.

Figure 2 compares respectively the marginal (XLi(tij)
T β̂) and the subject-specific

(XLi(tij)
T β̂+Zi(tij)

T b̂i with b̂i the empirical Bayes estimate) predictions from the linear

mixed model with the observed log PSA values. Observations and predictions are aver-

aged by intervals of times having the same amount of PSA measures. First, whatever

the assumed dependency between processes, the longitudinal predictions are very similar

between models. This was expected since the structure of the longitudinal model was

the same in all the models and all the models took into account (even if differently) the

association with the risk of recurrence. Second, the marginal predictions deviate from the

observed mean trajectory from 2-3 years after the end of EBRT but the subject-specific

predictions show a very good fit to the observed data. This deviation of the marginal pre-

dictions is due to the informative dropout caused by the clinical recurrence and was again

expected. In the seven models, the residuals of the longitudinal submodel were very sim-

ilar and did not exhibit any heteroscedasticity problem or model misspecification (results

not shown).

For the goodness-of-fit of the survival submodel, we only focused on the four joint

models (b), (c), (f) and (g). Figure 3 displays the predicted survival curves and the

Kaplan-Meier estimate of the time-to-recurrence. The predicted survival curves were

computed as
1

N

N∑
i=1

Si

(
t|b̂i
)

where b̂i is the empirical Bayes estimate of bi. All the

predicted survival curves remained in the 95% confidence interval of the Kaplan-Meier

estimate showing an overall correct goodness-of-fit even if the curves slightly differed one
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from the other.

[Figure 3 about here.]

We used also the Cox-Snell residuals computed as
(

Λi

(
Ti|b̂i

)
=
∫ Ti
0
λi

(
t|b̂i
)
dt
)

to

evaluate the overall goodness-of-fit of the survival models. Figure 4 displays the Kaplan-

Meier estimate of the Cox-Snell residuals from the 4 models. They are relatively close to

the theoretical survival curve of a unit exponential random variable (exp(−t)) showing

the overall satisfying goodness-of-fit of the four survival models.

Using the Martingale residuals computed as
(
Ei − Λi

(
Ti|b̂i

))
, we specifically assessed

in Figure 5 the log-linearity assumption of the covariates linking the PSA dynamics and

the risk of recurrence. In model (c) with the current level and slope, the residuals are

satisfying according to the slope of log PSA but exhibit a deviation in the larger values

of the current level of log PSA. When assuming instead a transformation for the current

log PSA level in model (f), this deviation disappears, showing a very good adequation to

the log-linearity assumption with the logistic transformation of the current level of log

PSA and the current slope. In model (b) assuming a dependency via the slope only, the

residuals also highlight a deviation in the large values of the predicted slope. The same

phenomenon is observed in model (g) where the dependency is directly on the individual

random-effects. While the residuals are correct for the random intercept and the random

short-term drop, a deviation from the zero-mean is observed for larger random long-term

slopes.

[Figure 4 about here.]

[Figure 5 about here.]
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4.5 Predictive accuracy assessment

To evaluate the predictiveness of these joint models, we computed the approximated

cross-validated prognostic likelihoods that estimate the EPOCE in Figure 6 (A), and the

differences between models with 95% tracking intervals in Figure 6 (B). The abscissa of

the graphs represents the times s of prediction so that each point gives the model ability

to predict the risk of event from time s (in Figure 6 (A)) and the difference in model

abilities (in Figure 6 (B)) for subjects still at risk at time s according to the PSA repeated

measures collected before s. We remind that the EPOCE is a risk so that the lower the

EPOCE estimate, the better the predictive accuracy of the model.

[Figure 6 about here.]

Interestingly, the model with the best goodness-of-fit, that is model (f), does not have

the best predictive accuracy for all the times of prediction between 1 year and 6 years

after the end of EBRT. Its predictive accuracy is the best (lowest EPOCE estimate) when

using information in the first 2.25 years after the end of EBRT on patients still at risk

at these times. However, after 2.25 years (and especially after 3 years), its predictive

accuracy becomes a lot worse compared to the ones of models (b), (c) and (g).

Compared to the goodness-of-fit measures, the predictive accuracy measures focus

only on subjects still at risk at the time of prediction. Yet, in our dataset, 50% of the

events occurred before 2.8 years and 75% occurred before 4 years. This means that most

of the information available is concentrated in the first years after the end of EBRT,

giving more importance to that period of time in the estimation process compared to

longer times after EBRT. As a consequence, models that gave a very good fit to the data

in the first years as model (f) had better overall goodness-of-fit. This is confirmed by the

predicted survival curves in Figure 3 which show a slightly better fit of model (f) in the

first years after the end of EBRT (and a slightly better fit of model (g) in longer times
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after end of EBRT).

Finally, we note that in the longer times of prediction, the models having the smallest

EPOCE were those assuming a dependency through the random-effects or through the

current log PSA slope. This suggests that after a few years, the slope of log PSA could

be the major predictor of the risk of recurrence on subjects still at risk of recurrence.

Indeed, although most of the models included the slope as a predictor, the intensity of the

effect of the current slope was a lot more important in model (g) with the random-effects

(parameter estimate around 4) and in model (b) with only the current slope (parameter

estimate around 3) compared to models (c) and (f) including the current log PSA level

also (and where the parameter estimates of the effect of the current slope were around 2

and 1).

4.6 Individual predictions

To illustrate how joint models can be used to provide dynamic individual predictions

using the methodology described in section 3.2, Figure 7 displays dynamic individual

predictions of the risk of clinical recurrence computed at an horizon of 3 years and updated

every 6 months from the joint model (f). The patient had a T-stage of 2, a Gleason score

of 7, an initial PSA of 9.7ng/mL and had a clinical recurrence after 3.8 years following the

end of EBRT. The figure illustrates how the dynamic predictive tool can be updated at

each new measurement of the biomarker, with here a progressive increase in the predicted

risk of recurrence over years.

[Figure 7 about here.]
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5 Conclusion

This paper aimed at explaining through an application on a real dataset how shared

random-effect models could be used in practice, how their assumptions could be evaluated,

and how individual predictions could be derived from them.

We specifically focused here on SREM that differed by the nature of the dependency

assumed between the biomarker dynamics and the risk of the event. Indeed, most ap-

plications of the SREM assume that only the current level of the biomarker impacts the

risk of event. Yet, first the log-linear assumption induced by the inclusion of the current

level of the biomarker in the proportional hazard model may not hold, and second, other

characteristics of the biomarker trajectory can better summarize the dependency between

the two processes than the current level. For example, in the application, we first found

using Martingale residuals that the log-linear assumption of the current true level of the

biomarker did not hold and that a logistic transformation of this current true level should

be considered instead. Second, we found that the current slope of the biomarker was the

most important predictor of the risk of recurrence.

As we were interested both in the fit of the models to the data, and the models ability

to predict the risk of event, we evaluated both the goodness-of-fit and the predictive

accuracy of the models. Interestingly, we found that the model with the best Akaike

criterion and adequate Martingale residuals (i.e. the best goodness-of-fit) was not the

best model for predicting the risk of recurrence whatever the time elapsed since the end of

the treatment. This illustrates the difference between these two types of evaluation. The

goodness-of-fit measures use all the information available while the predictive accuracy

measures use only a part of the longitudinal biomarker (the history of the biomarker up to

time s) and only a part of the sample (the subjects still at risk at time s). This raises the

question of the methodology which should be favored when developing dynamic predictive

tools. When interested only in the predictive ability of a model and the development of a
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dynamic predictive tools, predictive accuracy measures may be preferable over goodness-

of-fit measures.

Among predictive accuracy measures, we only used the prognostic cross-entropy2–20

which offers a natural way to focus on the ability to predict the event from the history

of the marker. Yet, other measures could be investigated as the Brier score6–7–20 and

AUC25–39. Nevertheless, it should be kept in mind that the over-optimism with predictive

accuracy measures computed on the internal data always needs to be corrected. This

was done using an approximated cross-validation formula for the EPOCE but no such

approximation is available for the Brier score or AUC yet, and classical cross-validation

technique is computationally too intensive with joint models to be considered in practice.

We also note that the EPOCE has the advantage to provide a tracking interval of the

difference between EPOCE of two models. This is very useful to appreciate the gain in

predictive accuracy of a model over another, and has not been developed yet for the other

measures.
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Figure 1: Individual observed trajectories of log(PSA + 0.1) over time for (A) censored
patients and (B) patients who clinically recurred.
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Figure 2: Comparison of the subject-specific predictions (A) and the marginal predictions
(B) with the observed PSA values averaged by intervals of times having the same amount
of PSA measures.
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Figure 4: Kaplan-Meier estimates of the Cox-Snell residuals from four joint models ((b),
(c), (f) and (g)) in plain black line, their 95% confidence bands in dashed black line, and
the theoretical survival curve of a unit exponential random variable in plain grey line.
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Model (g) : Random effects

Predicted decline random effect
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Figure 5: Martingale residuals versus predicted covariates summarizing the dependency
between the PSA dynamics and the risk of recurrence in four joint models ((c), (f), (b)
and (g)).
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Figure 6: (A) CVPOLa computed from the 7 shared random-effect models from times of
prediction from 1 to 6 years after the end of radiation therapy. For each time of prediction,
the number of subjects still at risk (and the number of clinical recurrence) are indicated.
(B) Differences in EPOCE estimate with 95% tracking interval (T.I.) between 4 joint
models from times of prediction from 1 to 6 years after the end of radiation therapy.
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Figure 7: Individual dynamic predicted probability of clinical recurrence (•) within 3
years and updated every 6 months computed from model (f) and its 95% confidence
bands (bold plain line) obtained by a Monte Carlo method with 2000 draws; repeated
PSA measures are denoted by ×. The patient had a T-stage of 2, a Gleason score of 7,
an initial PSA of 9.7ng/mL and had a clinical recurrence after 3.8 years following the end
of EBRT.
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Table 1: Goodness-of-fit statistics and parameter estimates (standard-deviation) of the
association between PSA dynamics and risk of recurrence adjusted for other prognostic
factors from joint models (a) to (g).

Model (a) (b) (c) (d) (e) (f) (g)

Dependency Y ∗i (t)
∂Y ∗i (t)

∂t

(
Y ∗i (t)
∂Y ∗i (t)

∂t

) (
Y ∗i (t− 1)
∂Y ∗i (t− 1)

∂t

)
Γ (Y ∗i (t))

(
Γ (Y ∗i (t))
∂Y ∗i (t)

∂t

)
bi

L -2644.15 -2635.97 -2628.55 -2637.62 -2611.06 -2605.57 -2630.70
AIC 5356.29 5339.93 5327.09 5345.25 5290.11 5281.14 5333.41

# parameters 34 34 35 35 34 35 36

Level† 0.95 (0.08) - 0,49 (0.12) 0.44 (0.15) 7.34 (0.78) 5.45 (0.84) -

Slope‡ - 3.14 (0.35) 2.04 (0.39) 2.19 (0.37) - 1.08 (0.32) -

Random effects:

b0i (Intercept) - - - - - - 1.03 (0.30)

b1i (f1(t)) - - - - - - -0.32 (0.12)

b2i (t) - - - - - - 4.05 (0.55)
† Corresponds to the effect of the current true log PSA level in models (a) and (c); corresponds to the effect of the true log PSA level one
year before in model (d), and
corresponds to the effect of the transformed true log PSA level in models (e) and (f).
‡ Corresponds to the effect of the current slope of log PSA in models (b), (c) and (f); corresponds to the effect of the slope one year before
in model (d).
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