ROQUIN/RC3H1 alterations are not found in angioimmunoblastic T-cell lymphoma.

Tiphanie Auguste, Marion Travert, Karin Tarte, Patricia Amé-Thomas, Catherine Artchounin, Nadine Martin-Garcia, Aurélien De Reynies, Laurence De Leval, Philippe Gaulard, Marie-Hélène Delfau-Larue

To cite this version:

Tiphanie Auguste, Marion Travert, Karin Tarte, Patricia Amé-Thomas, Catherine Artchounin, et al.. ROQUIN/RC3H1 alterations are not found in angioimmunoblastic T-cell lymphoma.. PLoS ONE, Public Library of Science, 2013, 8 (6), pp.e64536. <10.1371/journal.pone.0064536>. <inserm-00868981>

HAL Id: inserm-00868981
http://www.hal.inserm.fr/inserm-00868981
Submitted on 2 Oct 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ROQUIN/RC3H1 Alterations Are Not Found in Angioimmunoblastic T-Cell Lymphoma

Tiphanie Auguste1,2, Marion Travert1, Karin Tarte3, Patricia Amé-Thomas3, Catherine Artchouin1,6, Nadine Martin-Garcia1,6, Aurélien de Reynies4, Laurence de Leval5, Philippe Gaulard1,2,6, Marie-Hélène Delfau-Larue1,2,7*

1 INSERM U955, Immunologie et Oncogénèse des Tumeurs Lymphoïdes, Créteil, France, 2 Faculté de Médecine, Université Paris-Est, Créteil, France, 3 INSERM U917, Microenvironnement et Cancer, Rennes, France, 4 Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France, 5 Service de Pathologie Clinique, Institut Universitaire de Pathologie, Lausanne, Switzerland, 6 Département de Pathologie, Groupe Hospitalier Henri Mondor–Albert Chenevier, Créteil, France, 7 Laboratoire d’Immunologie Biologique, Assistance Publique–Hôpitaux de Paris (AP-HP), Groupe Henri-Mondor Albert-Chenevier, Créteil, France

Abstract

Angioimmunoblastic T-cell Lymphoma (AITL) is one of the most frequent T-cell lymphoma entities. Follicular helper T lymphocytes (TFH) are recognized as the normal cellular counterpart of the neoplastic component. Despite a clonal T-cell feature and few described recurrent cytogenetic abnormalities, a driving oncogenic event has not been identified so far. It has been recently reported that in mice, heterozygous inactivation of Roquin/Rc3h1, a RING type E3 ubiquitine ligase, recapitulates many of the clinical, histological, and cellular features associated with human AITL. In this study we explored whether ROQUIN alterations could be an initial event in the human AITL oncogenic process. Using microarray and RT-PCR analyses, we investigated the levels of ROQUIN transcripts in TFH tumor cells purified from AITL (n = 8) and reactive tonsils (n = 12) and found similar levels of ROQUIN expression in both. Moreover, we also demonstrated that ROQUIN protein was expressed by AITL TFH (PD1+) cells. They then analysed ROQUIN coding sequence in 12 tumor cell-rich AITL samples and found no mutation in any of the samples. Finally, we analysed the expression of MiR101, a putative partner of ROQUIN involved in the modulation of ICOS expression and found similar levels of expression in tumor and reactive TFH. Altogether, this study shows that neither alteration of ROQUIN gene nor deregulation of miR101 expression is likely to be a frequent recurrent event in AITL.

Introduction

Angioimmunoblastic T-cell Lymphoma (AITL) is a distinct T-cell lymphoma entity [1] originally described as a dysimmune condition [2]. It usually manifests with generalized lymphadenopathy, hepatomegaly, splenomegaly, fever, sweats, and skin rash and is frequently associated with clinical and biological autoimmune manifestations [3]. A clonal T-Cell Receptor gene rearrangement is detected in around 80% of the cases [4,5], and a few recurrent cytogenetic abnormalities have been reported (reviewed in [6]). Recently, we have reported mutations in isocitrate dehydrogenases 2 (IDH2) [7] and Ten-Eleven Translocation 2 (TET2) [8] genes in AITL, two genes involved in epigenetic gene regulation, but to date, no driving oncogenic event has been identified. We and others have shown that Follicular Helper T (TFH) cells are the normal cellular counterpart of the neoplastic component of AITL [9–12]. TFH cells constitute a specialized subset of T cells which allows the selection of high-affinity B lymphocytes within germinal centers and provide helper function for antibody production [13]. Human TFH cells express high levels of BCL6, PD1, ICOS, the chemokine CXCL13 and its receptor (CXCR5) and secrete the cytokine IL-21 [14–18].

Recently, a mouse model has been proposed for AITL [19]. It recapitulates many of the clinical and pathological features associated with AITL, including lymphadenopathy, hypergammaglobulinemia and accumulation/expansion of clonal TFH cells. This phenotype is specifically linked to heterozygous Roquin/Rc3h1 point mutation [sanzaro che C] in T cells [20]. Roquin, a RING-type E3 ubiquitin ligase family member, has been previously identified as a regulator of autoimmune responses in mice [20]. We thus hypothesized that in human, ROQUIN/RC3H1 alterations could occur as an initial event of the AITL oncogenic process, leading to TFH accumulation or proliferation prone to subsequent transforming events.

Material and Methods

The present study was approved by the institutional review board ‘Comité de Protection des Personnes, Créteil, France’ (CPP 09–006). Written consent was obtained from patients with lymphoma. Reactive human tonsils were collected from children...
undergoing routine tonsillectomy. Oral information was given to parents. A consent form attesting the oral consent was signed by the surgeon and given to the research team with tonsils.

Cell samples and AITL tissues
Normal cell subsets were isolated from reactive human tonsils. Briefly, mononuclear cells were isolated by mechanical disruption followed by Ficoll-hypaque density gradient centrifugation. T_{FH} cells were purified after depletion of CD19, CD8, CD14 and CD16-positive cells with magnetic beads (Milteny Biotec, Paris, France), by cell sorting of CD4-FITC, CXCR5-PE and ICOS-PC7 triple-positive cells on Mo-Flo legacy (Beckman Coulter, Villepinte, France). Tonsil CD4⁺, CD8⁺ T-cells and B-cells were purified by positive selection with antibodies directed against CD4, CD8, and CD19 respectively (Milteny Biotec, Paris, France). Neoplastic T_{FH} cells were isolated from cryopreserved mononuclear cell suspensions of AITL lymph node biopsies, through a one-step CD4-FITC, CXCR5-PE and ICOS-PC7 cell sorting.

Twelve AITL tumor frozen tissue samples were selected on the basis of high tumor cell content. After complete immunostaining for T_{FH} markers including PD1, ICOS and CXCL13, a semi-quantitative evaluation of tumor cells was performed as previously described [21] and cases with more than 50% tumor cells were selected for ROQUIN sequence analyses (Figure 1).

Immunohistochemistry
For in situ evaluation of ROQUIN expression, deparaffinised tissue sections of 8 AITL samples were stained with a polyclonal antibody (Novius biologicals NBP1-89590, Cambridge, United Kingdom) using a Vectastain immunoperoxidase method (Vector Labs, Peterborough, UK) and revealed with Diaminobenzidine (DAB). Specificity of the antibody was validated using NIH3T3 transfected with human full length ROQUIN cDNA (data not shown). The distribution and phenotypic characteristics of ROQUIN-positive cells in vivo was explored by double immunostainings for ROQUIN and either PAX5 (as a B-cell marker) and PD1 (as T_{FH} marker). Briefly, cases were first stained for ROQUIN using an immunoperoxidase method (Vectastain), then for PAX5 ((DakoCytomation, Glostrup, Denmark) or PD1

Figure 1. Illustrative case of AITL rich in tumor cells. Diffuse proliferation of large neoplastic cells surrounded by inflammatory cells (plasma cells, eosinophils) and vascular hyperplasia (hematoxylin-eosin, original magnification ×20) (A). Numerous neoplastic cells highlighted by positivity for T_{FH} markers CXCL13 (B), ICOS (C) and PD1(D) (immunoperoxidase, original magnification ×20). doi:10.1371/journal.pone.0064536.g001

Figure 2. ROQUIN expression in human reactive and tumoral lymphoid samples. Levels of ROQUIN transcripts determined by gene expression profiling of 17 AITL tumor tissue samples and 2 AITL cell suspensions enriched in tumor cells (≥50%) samples as previously reported [10]. (probe-set 228996_at): ROQUIN transcripts level is slightly higher in enriched tumor cell sample (P = 0.0067 unpaired t-test) (A). ROQUIN mRNA levels determined by quantitative RT-PCR in reactive tonsils: total extract (n = 1), CD4⁺ (n = 2), CD8⁺ (n = 2), or CD19⁺ (n = 2) lymphocytes. Results were normalized by HPRT and compared to reactive purified TFH cells as calibrator: reactive CD4⁻CD8⁻ and CD19-positive subsets display heterogeneous levels of ROQUIN mRNA (B). ROQUIN mRNA levels ([228996_at] probeset) in purified reactive (n = 12) and neoplastic T_{FH} cells (n = 8). T_{FH} cells were purified from 12 reactive tonsils and 8 AITL lymph nodes, RNA was extracted and whole genome expression was analysed on HG-U133 plus 2.0 Affymetrix GeneChip arrays. Similar levels of ROQUIN transcript are observed (C).

doi:10.1371/journal.pone.0064536.g002

Figure 3. Immunohistochemical detection of ROQUIN in AITL. Among the many cells showing a cytoplasmic granular staining for ROQUIN (brown), a few are PAX5-positive large cells (B-immunoblasts) (pink arrow) whereas most of them are small to medium-sized PAX5-negative lymphoid cells forming small aggregates, corresponding to neoplastic cells of AITL (black arrows) (A). In addition, these aggregates of medium-sized ROQUIN- positive cells (brown, granular staining) co expressed the T_{FH}-associated marker PD1 (red, membrane staining) (B). Double immunohistochemistry, original magnification ×250. doi:10.1371/journal.pone.0064536.g003
The level of ICOS mRNA expression is maintained even in the presence of Roquin. The levels of ICOS mRNA expression are similarly expressed in reactive and AITL TFH cells. Analyses of ICOS expression (210439_at) showed that the level of ICOS mRNA expression is maintained even in the presence of ICOS-bearing TFH cells (A). Level of miR101 (has-miR-101) is low and similar in both tumor and reactive TFH cells (p = 0.8 unpaired t-test, NS) (B). The analyses of ICOS expression were performed either from reactive tonsils or from AITL lymph nodes (Figure 2C), thus excluding the hypothesis of a ROQUIN extinction by promoter alteration or gene expression dysregulation in AITL. ROQUIN protein is expressed by AITL tumor cells. In situ evaluation of the pattern of ROQUIN expression was performed by immunohistochemistry. In all eight AITL cases investigated, numerous cells showing a granular cytoplasmic staining were observed. These comprised scattered large cells resembling B-blasts, smaller lymphocytes and many small to medium-sized atypical cells suggestive of the neoplastic cell component, as well as endothelial cells (Figure 3A). Double immunostainings performed in 4 cases demonstrated that most ROQUIN-positive cells were PAX5-negative and that many of them expressed PD1, therefore sharing the characteristic morphological and phenotypic features of neoplastic TFH cells (Figure 3B). Furthermore, the observed granular cytoplasmic staining is compatible with Roquin localization in P bodies or stress granules as reported in the mouse [23,24]. ROQUIN coding sequence is not mutated in human AITL. We next investigated the presence of nonsense mutations in ROQUIN coding sequence. The 3402 bp ROQUIN coding sequence was obtained from 12 AITL samples with a high tumor load as well as normal CD4+ T cells sorted from 2 reactive tonsils. In contrast to Sanroque mice that develop a T cell lymphoproliferative disorder with several symptoms of AITL including auto-immune manifestations and organomegaly as a result of Roquin mutations [19], no mutation was found in any of the AITL patients. ICOS and miR101 expression are similarly expressed in reactive and AITL TFH cells. Physiologically, in mice, Roquin limits ICOS expression by promoting the degradation of ICOS mRNA in a dose-dependent manner [24,25]. In sanroque mice, mutated Roquin is unable to promote ICOS mRNA degradation, resulting in the overexpression of the protein. Here, we show that the level of ICOS mRNA expression is maintained even in the presence of ROQUIN transcripts both in human reactive and tumor TFH cells.
uncover other molecules of potential relevance toAITL pathophysiology.

Acknowledgments

The authors wish to thank Dr Launey for providing children tonsils and Virginie Fataccioli for her contribution. We are also thankful for the contribution made by Christelle Thibault from the IGBMC platform (Allysymetrix, Philippe Kastner, Strasbourg) and Philippe Dessens from Agilent miRNA platform, Institut Gustave Roussy.

Author Contributions

Conceived and designed the experiments: MHDL TA MT LdL AdR KT PA. Performed the experiments: TA MT LdL AdR KT PA CA NM. Analyzed the data: TA MHDLMT AdR NM PG. Contributed reagents/materials/analysis tools: KT PA AdR. Wrote the paper: MHDLMT PG.

References