R. Dommett, N. Klein, and M. Turner, Mannose-binding lectin in innate immunity: past, present and future, Tissue Antigens, vol.64, issue.3, pp.193-209, 2006.
DOI : 10.1016/S0168-8278(98)80248-1

S. Hansen, L. Selman, N. Palaniyar, K. Ziegler, and J. Brandt, Collectin 11 (CL-11, CL-K1) Is a MASP-1/3-Associated Plasma Collectin with Microbial-Binding Activity, The Journal of Immunology, vol.185, issue.10, pp.6096-6104, 2010.
DOI : 10.4049/jimmunol.1002185

H. Keshi, T. Sakamoto, T. Kawai, K. Ohtani, and T. Katoh, Identification and Characterization of a Novel Human Collectin CL-K1, Microbiology and Immunology, vol.12, issue.12, pp.1001-1013, 2006.
DOI : 10.1111/j.1348-0421.2006.tb03868.x

Y. Endo, M. Matsushita, and T. Fujita, The role of ficolins in the lectin pathway of innate immunity, The International Journal of Biochemistry & Cell Biology, vol.43, issue.5, pp.705-712, 2011.
DOI : 10.1016/j.biocel.2011.02.003

R. Sorensen, S. Thiel, and J. Jensenius, Mannan-binding-lectin-associated serine proteases, characteristics and disease associations, Springer Seminars in Immunopathology, vol.175, issue.Pt 3, pp.299-319, 2005.
DOI : 10.1007/s00281-005-0006-z

C. Stover, S. Thiel, M. Thelen, N. Lynch, and T. Vorup-jensen, Two constituents of the initiation complex of the mannan-binding lectin activation pathway of complement are encoded by a single structural gene, J Immunol, vol.162, pp.3481-3490, 1999.

M. Takahashi, Y. Endo, T. Fujita, and M. Matsushita, A truncated form of mannose-binding lectin-associated serine protease (MASP)-2 expressed by alternative polyadenylation is a component of the lectin complement pathway, International Immunology, vol.11, issue.5, pp.859-863, 1999.
DOI : 10.1093/intimm/11.5.859

S. Degn, A. Hansen, R. Steffensen, C. Jacobsen, and J. Jensenius, MAp44, a Human Protein Associated with Pattern Recognition Molecules of the Complement System and Regulating the Lectin Pathway of Complement Activation, The Journal of Immunology, vol.183, issue.11, pp.7371-7378, 2009.
DOI : 10.4049/jimmunol.0902388

M. Skjoedt, T. Hummelshoj, Y. Palarasah, C. Honore, and C. Koch, A Novel Mannose-binding Lectin/Ficolin-associated Protein Is Highly Expressed in Heart and Skeletal Muscle Tissues and Inhibits Complement Activation, Journal of Biological Chemistry, vol.285, issue.11, pp.8234-8243, 2010.
DOI : 10.1074/jbc.M109.065805

S. Degn, L. Jensen, A. Hansen, D. Duman, and M. Tekin, Mannan-Binding Lectin-Associated Serine Protease (MASP)-1 Is Crucial for Lectin Pathway Activation in Human Serum, whereas neither MASP-1 nor MASP-3 Is Required for Alternative Pathway Function, The Journal of Immunology, vol.189, issue.8, pp.3957-3969, 2012.
DOI : 10.4049/jimmunol.1201736

D. Heja, A. Kocsis, J. Dobo, K. Szilagyi, and R. Szasz, Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP-1 as the exclusive activator of MASP-2, Proceedings of the National Academy of Sciences, vol.109, issue.26, pp.10498-10503, 2012.
DOI : 10.1073/pnas.1202588109

C. Gaboriaud, N. Thielens, L. Gregory, V. Rossi, and J. Fontecilla-camps, Structure and activation of the C1 complex of complement: unraveling the puzzle, Trends in Immunology, vol.25, issue.7, pp.368-373, 2004.
DOI : 10.1016/j.it.2004.04.008

M. Moller-kristensen, S. Thiel, A. Sjoholm, M. Matsushita, and J. Jensenius, Cooperation between MASP-1 and MASP-2 in the generation of C3 convertase through the MBL pathway, International Immunology, vol.19, issue.2, pp.141-149, 2007.
DOI : 10.1093/intimm/dxl131

M. Dahl, S. Thiel, M. Matsushita, T. Fujita, and A. Willis, MASP-3 and Its Association with Distinct Complexes of the Mannan-Binding Lectin Complement Activation Pathway, Immunity, vol.15, issue.1, pp.127-135, 2001.
DOI : 10.1016/S1074-7613(01)00161-3

D. Iwaki, K. Kanno, M. Takahashi, Y. Endo, and N. Lynch, Small Mannose-Binding Lectin-Associated Protein Plays a Regulatory Role in the Lectin Complement Pathway, The Journal of Immunology, vol.177, issue.12, pp.8626-8632, 2006.
DOI : 10.4049/jimmunol.177.12.8626

S. Zundel, S. Cseh, M. Lacroix, M. Dahl, and M. Matsushita, Characterization of Recombinant Mannan-Binding Lectin-Associated Serine Protease (MASP)-3 Suggests an Activation Mechanism Different from That of MASP-1 and MASP-2, The Journal of Immunology, vol.172, issue.7, pp.4342-4350, 2004.
DOI : 10.4049/jimmunol.172.7.4342

C. Rooryck, A. Diaz-font, D. Osborn, E. Chabchoub, and V. Hernandez-hernandez, Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome, Nature Genetics, vol.122, issue.3, pp.197-203, 2011.
DOI : 10.1016/j.ydbio.2007.10.028

A. Sirmaci, T. Walsh, H. Akay, M. Spiliopoulos, and Y. Sakalar, MASP1 Mutations in Patients with Facial, Umbilical, Coccygeal, and Auditory Findings of Carnevale, Malpuech, OSA, and Michels Syndromes, The American Journal of Human Genetics, vol.87, issue.5, pp.679-686, 2010.
DOI : 10.1016/j.ajhg.2010.09.018

H. Sekine, M. Takahashi, D. Iwaki, and T. Fujita, The Role of MASP-1/3 in Complement Activation, Adv Exp Med Biol, vol.734, pp.41-53, 2013.
DOI : 10.1007/978-1-4614-4118-2_3

M. Megyeri, V. Harmat, B. Major, A. Vegh, and J. Balczer, Quantitative Characterization of the Activation Steps of Mannan-binding Lectin (MBL)-associated Serine Proteases (MASPs) Points to the Central Role of MASP-1 in the Initiation of the Complement Lectin Pathway, Journal of Biological Chemistry, vol.288, issue.13, pp.8922-8934, 2013.
DOI : 10.1074/jbc.M112.446500

M. Budayova-spano, W. Grabarse, N. Thielens, H. Hillen, and M. Lacroix, Monomeric Structures of the Zymogen and Active Catalytic Domain of Complement Protease C1r, Structure, vol.10, issue.11, pp.1509-1519, 2002.
DOI : 10.1016/S0969-2126(02)00881-X

M. Budayova-spano, M. Lacroix, N. Thielens, G. Arlaud, and J. Fontecilla-camps, The crystal structure of the zymogen catalytic domain of complement protease C1r reveals that a disruptive mechanical stress is required to trigger activation of the C1 complex, The EMBO Journal, vol.123, issue.3, pp.231-239, 2002.
DOI : 10.1093/emboj/21.3.231

J. Dobo, V. Harmat, L. Beinrohr, E. Sebestyen, and P. Zavodszky, MASP-1, a Promiscuous Complement Protease: Structure of Its Catalytic Region Reveals the Basis of Its Broad Specificity, The Journal of Immunology, vol.183, issue.2, pp.1207-1214, 2009.
DOI : 10.4049/jimmunol.0901141

C. Gaboriaud, V. Rossi, I. Bally, G. Arlaud, and J. Fontecilla-camps, Crystal structure of the catalytic domain of human complement C1s: a serine protease with a handle, The EMBO Journal, vol.19, issue.8, pp.1755-1765, 2000.
DOI : 10.1093/emboj/19.8.1755

V. Harmat, P. Gal, J. Kardos, K. Szilagyi, and G. Ambrus, The Structure of MBL-associated Serine Protease-2 Reveals that Identical Substrate Specificities of C1s and MASP-2 are Realized Through Different Sets of Enzyme???Substrate Interactions, Journal of Molecular Biology, vol.342, issue.5, pp.1533-1546, 2004.
DOI : 10.1016/j.jmb.2004.07.014

C. Cortesio and W. Jiang, Mannan-binding lectin-associated serine protease 3 cleaves synthetic peptides and insulin-like growth factor-binding protein 5, Archives of Biochemistry and Biophysics, vol.449, issue.1-2, pp.164-170, 2006.
DOI : 10.1016/j.abb.2006.02.006

N. Pozzi, A. Vogt, D. Gohara, D. Cera, and E. , Conformational selection in trypsin-like proteases, Current Opinion in Structural Biology, vol.22, issue.4, pp.421-431, 2012.
DOI : 10.1016/j.sbi.2012.05.006

G. Arlaud, A. Reboul, R. Sim, and M. Colomb, Interaction of C-inhibitor with the Cr and Cs subcomponents in human C, Biochimica et Biophysica Acta (BBA) - Protein Structure, vol.576, issue.1, pp.151-162, 1979.
DOI : 10.1016/0005-2795(79)90494-X

G. Arlaud, R. Sim, A. Duplaa, and M. Colomb, Differential elution of Clq, Cl??r and Cl??s from human CT bound to immune aggregates. use in the rapid purification of Cl?? sub-components, Molecular Immunology, vol.16, issue.7, pp.445-450, 1979.
DOI : 10.1016/0161-5890(79)90069-5

M. Lacroix, C. Ebel, J. Kardos, J. Dobo, and P. Gal, Assembly and Enzymatic Properties of the Catalytic Domain of Human Complement Protease C1r, Journal of Biological Chemistry, vol.276, issue.39, pp.36233-36240, 2001.
DOI : 10.1074/jbc.M105688200

V. Rossi, I. Bally, N. Thielens, A. Esser, and G. Arlaud, Baculovirus-mediated Expression of Truncated Modular Fragments from the Catalytic Region of Human Complement Serine Protease C1s: EVIDENCE FOR THE INVOLVEMENT OF BOTH COMPLEMENT CONTROL PROTEIN MODULES IN THE RECOGNITION OF THE C4 PROTEIN SUBSTRATE, Journal of Biological Chemistry, vol.273, issue.2, pp.1232-1239, 1998.
DOI : 10.1074/jbc.273.2.1232

V. Rossi, S. Cseh, I. Bally, N. Thielens, and J. Jensenius, Substrate Specificities of Recombinant Mannan-binding Lectin-associated Serine Proteases-1 and -2, Journal of Biological Chemistry, vol.276, issue.44, pp.40880-40887, 2001.
DOI : 10.1074/jbc.M105934200

N. Thielens, S. Cseh, S. Thiel, T. Vorup-jensen, and V. Rossi, Interaction Properties of Human Mannan-Binding Lectin (MBL)-Associated Serine Proteases-1 and -2, MBL-Associated Protein 19, and MBL, The Journal of Immunology, vol.166, issue.8, pp.5068-5077, 2001.
DOI : 10.4049/jimmunol.166.8.5068

F. Teillet, B. Dublet, J. Andrieu, C. Gaboriaud, and G. Arlaud, The Two Major Oligomeric Forms of Human Mannan-Binding Lectin: Chemical Characterization, Carbohydrate-Binding Properties, and Interaction with MBL-Associated Serine Proteases, The Journal of Immunology, vol.174, issue.5, pp.2870-2877, 2005.
DOI : 10.4049/jimmunol.174.5.2870

A. Mccoy, R. Grosse-kunstleve, P. Adams, M. Winn, and L. Storoni, crystallographic software, Journal of Applied Crystallography, vol.40, issue.4, pp.658-674, 2007.
DOI : 10.1107/S0021889807021206

L. Jin, P. Pandey, R. Babine, J. Gorga, and K. Seidl, Crystal Structures of the FXIa Catalytic Domain in Complex with Ecotin Mutants Reveal Substrate-like Interactions, Journal of Biological Chemistry, vol.280, issue.6, pp.4704-4712, 2005.
DOI : 10.1074/jbc.M411309200

T. Jones, J. Zou, S. Cowan, and M. Kjeldgaard, Improved methods for building protein models in electron density maps and the location of errors in these models, Acta Crystallographica Section A Foundations of Crystallography, vol.47, issue.2, pp.110-119, 1991.
DOI : 10.1107/S0108767390010224

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.
DOI : 10.1107/S0907444904019158

A. Brunger, P. Adams, G. Clore, W. Delano, and P. Gros, Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination, Acta Crystallographica Section D Biological Crystallography, vol.54, issue.5, pp.905-921, 1998.
DOI : 10.1107/S0907444998003254

G. Murshudov, A. Vagin, and E. Dodson, Refinement of Macromolecular Structures by the Maximum-Likelihood Method, Acta Crystallographica Section D Biological Crystallography, vol.53, issue.3, pp.240-255, 1997.
DOI : 10.1107/S0907444996012255

M. Megyeri, V. Mako, L. Beinrohr, Z. Doleschall, and Z. Prohaszka, Complement Protease MASP-1 Activates Human Endothelial Cells: PAR4 Activation Is a Link between Complement and Endothelial Function, The Journal of Immunology, vol.183, issue.5, pp.3409-3416, 2009.
DOI : 10.4049/jimmunol.0900879

J. Presanis, K. Hajela, G. Ambrus, P. Gal, and R. Sim, Differential substrate and inhibitor profiles for human MASP-1 and MASP-2, Molecular Immunology, vol.40, issue.13, pp.921-929, 2004.
DOI : 10.1016/j.molimm.2003.10.013

J. Beattie, G. Allan, J. Lochrie, and D. Flint, Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis, Biochemical Journal, vol.395, issue.1, pp.1-19, 2006.
DOI : 10.1042/BJ20060086

S. Yang, C. Wang, S. Gillmor, R. Fletterick, and C. Craik, Ecotin: a serine protease inhibitor with two distinct and interacting binding sites, Journal of Molecular Biology, vol.279, issue.4, pp.945-957, 1998.
DOI : 10.1006/jmbi.1998.1748

M. Mcgrath, T. Erpel, C. Bystroff, and R. Fletterick, Macromolecular chelation as an improved mechanism of protease inhibition: structure of the ecotin-trypsin complex, EMBO J, vol.13, pp.1502-1507, 1994.

S. Waugh, J. Harris, R. Fletterick, and C. Craik, The structure of the proapoptotic protease granzyme B reveals the molecular determinants of its specificity, Nature Structural Biology, vol.7, issue.9, pp.762-765, 2000.
DOI : 10.1038/78992

C. Eggers, S. Wang, R. Fletterick, and C. Craik, The role of ecotin dimerization in protease inhibition, Journal of Molecular Biology, vol.308, issue.5, pp.975-991, 2001.
DOI : 10.1006/jmbi.2001.4754

S. Gillmor, T. Takeuchi, S. Yang, C. Craik, and R. Fletterick, Compromise and accommodation in ecotin, a dimeric macromolecular inhibitor of serine proteases, Journal of Molecular Biology, vol.299, issue.4, pp.993-1003, 2000.
DOI : 10.1006/jmbi.2000.3812

I. Schechter and A. Berger, On the size of the active site in proteases. I. Papain, Biochemical and Biophysical Research Communications, vol.27, issue.2, pp.157-162, 1967.
DOI : 10.1016/S0006-291X(67)80055-X

J. Perona and C. Craik, Evolutionary Divergence of Substrate Specificity within the Chymotrypsin-like Serine Protease Fold, Journal of Biological Chemistry, vol.272, issue.48, pp.29987-29990, 1997.
DOI : 10.1074/jbc.272.48.29987

D. Heja, V. Harmat, K. Fodor, M. Wilmanns, and J. Dobo, Monospecific Inhibitors Show That Both Mannan-binding Lectin-associated Serine Protease-1 (MASP-1) and -2 Are Essential for Lectin Pathway Activation and Reveal Structural Plasticity of MASP-2, Journal of Biological Chemistry, vol.287, issue.24, pp.20290-20300, 2012.
DOI : 10.1074/jbc.M112.354332

P. Roversi, S. Johnson, J. Caesar, F. Mclean, and K. Leath, Structural basis for complement factor I control and its disease-associated sequence polymorphisms, Proceedings of the National Academy of Sciences, vol.108, issue.31, pp.12839-12844, 2011.
DOI : 10.1073/pnas.1102167108

D. Cera and E. , Serine proteases, IUBMB Life, vol.279, issue.5, pp.510-515, 2009.
DOI : 10.1002/iub.186

W. Niu, Z. Chen, P. Gandhi, A. Vogt, and N. Pozzi, Crystallographic and Kinetic Evidence of Allostery in a Trypsin-like Protease, Biochemistry, vol.50, issue.29, pp.6301-6307, 2011.
DOI : 10.1021/bi200878c

J. Huntington, Slow thrombin is zymogen-like, Journal of Thrombosis and Haemostasis, vol.279, issue.Pt 1, pp.159-164, 2009.
DOI : 10.1111/j.1538-7836.2009.03365.x

B. Lechtenberg, D. Johnson, S. Freund, and J. Huntington, NMR resonance assignments of thrombin reveal the conformational and dynamic effects of ligation, Proceedings of the National Academy of Sciences, vol.107, issue.32, pp.14087-14092, 2010.
DOI : 10.1073/pnas.1005255107

R. Kidmose, N. Laursen, J. Dobo, T. Kjaer, and S. Sirotkina, Structural basis for activation of the complement system by component C4 cleavage, Proceedings of the National Academy of Sciences, vol.109, issue.38, pp.15425-15430, 2012.
DOI : 10.1073/pnas.1208031109

S. Tsiftsoglou and R. Sim, Human Complement Factor I Does Not Require Cofactors for Cleavage of Synthetic Substrates, The Journal of Immunology, vol.173, issue.1, pp.367-375, 2004.
DOI : 10.4049/jimmunol.173.1.367

S. Lovell, I. Davis, P. De-bakker, and J. Word, Structure validation by C?? geometry: ??,?? and C?? deviation, Proteins: Structure, Function, and Bioinformatics, vol.320, issue.3, pp.437-450, 2003.
DOI : 10.1002/prot.10286