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Phospholipase D regulates the size of
skeletal muscle cells through the activation of
mTOR signaling
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Philippe Bertolino®, Hubert Vidal', Etienne Lefai' and Georges Némoz'~

Abstract

mTOR is a major actor of skeletal muscle mass regulation in situations of atrophy or hypertrophy. It is established
that Phospholipase D (PLD) activates mTOR signaling, through the binding of its product phosphatidic acid (PA) to
mTOR protein. An influence of PLD on muscle cell size could thus be suspected. We explored the consequences of
altered expression and activity of PLD isoforms in differentiated L6 myotubes. Inhibition or down-regulation of the
PLD1 isoform markedly decreased myotube size and muscle specific protein content. Conversely, PLD1 overexpression
induced muscle cell hypertrophy, both in vitro in myotubes and in vivo in mouse gastrocnemius. In the presence of
atrophy-promoting dexamethasone, PLD1 overexpression or addition of exogenous PA protected myotubes against
atrophy. Similarly, exogenous PA protected myotubes against TNFa-induced atrophy. Moreover, the modulation of PLD
expression or activity in myotubes showed that PLD1 negatively regulates the expression of factors involved in muscle
protein degradation, such as the E3-ubiquitin ligases Murf1 and Atrogin-1, and the Foxo3 transcription factor. Inhibition
of mTOR by PP242 abolished the positive effects of PLD1 on myotubes, whereas modulating PLD influenced the
phosphorylation of both S6K1 and Akt, which are respectively substrates of mTORC1 and mTORC2 complexes. These
observations suggest that PLD1 acts through the activation of both mTORC1 and mTORC2 to induce positive trophic

wasting.

effects on muscle cells. This pathway may offer interesting therapeutic potentialities in the treatment of muscle
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Lay abstract

The phospholipase D (PLD) enzyme transforms phos-
phatidylcholine, a major lipid constituent of cell mem-
branes, into a messenger endowed with many activities
in the cell. PLD is known to influence the activity of
mTOR, a signaling pathway that plays an important role
in muscle mass regulation. We thus researched whether
PLD had an effect on the size of cultured muscle cells.
To this end, we used various types of PLD inhibitors, as
well as systems allowing to modify PLD expression. We
observed that both PLD inhibition and decreased ex-
pression induced muscle cell atrophy, associated with an
increased expression of factors involved in protein
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degradation. Conversely, overexpressing PLD induced a
hypertrophy and a decreased expression of these factors.
We further demonstrated that the changes in muscle cell
size induced by PLD were mediated by mTOR. This
study establishes that PLD has a positive influence on
muscle cells, and suggests that it could be a target in
therapeutic interventions aiming at preserving muscle
tissue from wasting associated with chronic diseases.

Background

Phospholipase D (PLD) catalyzes the conversion of the
membrane phospholipid phosphatidylcholine into the
messenger phosphatidic acid (PA). Two isoforms of PLD
have been identified, PLD1 and PLD2, each of which
exhibiting specific regulatory properties and subcellular
localization [1,2]. This enzyme has been extensively stud-
ied for its implication in vesicular trafficking, cytoskeletton
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dynamics, cell migration, survival, differentiation and pro-
liferation [3]. Since the pioneer work of Chen’s group
[4,5], its involvement in mTOR (mammalian Target Of
Rapamycin) signaling has attracted an increasing interest.
mTOR senses and integrates a variety of environmental
cues to regulate major cellular processes [6]. The ability of
PLD and its product PA to activate mTOR signaling
through both mTORC1 and mTORC2 complexes has
been widely described [7,8]. PA was shown to bind to the
FRB domain of mTOR protein, in competition with the
complex that the selective mTOR inhibitor rapamycin
forms with the immunophilin FKBP12 [4,9-11]. PA was
also shown to stimulate mTORC1 kinase activity by dis-
placing the FKBP38 inhibitor and by exerting direct effects
on mTOR [11]. Furthermore, it has been reported that PA
binding is required for the assembly of both mTORC1
and mTORC2 complexes, with a higher apparent PA af-
finity for the latter [10]. The role of PLD in the activation
of mTOR pathway is also supported by a number of stud-
ies. The ability of the small G protein Rheb, a key regula-
tor upstream of mTORC], to bind and activate PLD1 in a
GTP-dependent manner supports the contribution of
PLD1 to mTORCI signaling as an effector of Rheb [12].
Furthermore, whereas amino-acids stimulate PLD activity
and induce PLD1 translocation to the vicinity of mTOR
[13], PLD1 depletion or PLD1/2 inhibition impair amino-
acid dependent mTORC]1 activity [13,14].

The contribution of PLD and PA to mTOR signaling
is expected to be particularly relevant in skeletal muscle,
in which mTOR is thought to play a crucial role in tissue
adaptation to changes in physiological and pathological
conditions. Thus, muscle hypertrophic stimuli such as
mechanical loading, feeding, IGF-I, activate mTORC1
signaling, whereas it is inhibited by atrophic stimuli such
as unloading, starvation and glucocorticoids (reviewed in
[15]). Rapamycin inhibition of hypertrophic responses
further supports the involvement of mTORCI in muscle
hypertrophy [16]. Accordingly, mechanical loading-
induced hypertrophy is preserved under rapamycin treat-
ment in transgenic mice expressing a rapamycin-resistant
form of mTOR specifically in muscle [17]. The anabolic
actions of mTORCI are related to its ability to activate
protein synthesis by enhancing translation initiation and
elongation, to upregulate ribosome and mitochondrial bio-
genesis, and to negatively regulate autophagy [6]. Accord-
ingly, transgenic mice selectively lacking mTOR [18] or
mTORC1 [19] in skeletal muscle develop a severe dys-
trophy accompanied by a myofibre atrophy.

We and others previously reported the involvement of
PLD in myogenic differentiation, suggesting that this en-
zyme is important for muscle development [20-23].
Moreover, a role for PLD in mechanically-induced
muscle hypertrophy was hypothesized, as stretches im-
posed on mouse isolated EDL muscles induced a
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sustained PLD-dependent accumulation of PA, resulting
in mTORC1 stimulation [24]. Similarly, EDL muscles
submitted to eccentric contractions showed stably in-
creased PA levels. Interestingly, PA accumulation pre-
ceded a PI3 kinase/Akt independent activation of
mTORCI1 that could be prevented by 1-butanol, an in-
hibitor of PA production by PLD [25]. However, despite
these evidences a direct demonstration of PLD implica-
tion in the regulation of muscle cell size remains to be
provided. Thus, we set out to investigate the effects that
modulation of PLD activity or expression exerts on the
size and functional parameters of differentiated L6
myotubes, submitted or not to atrophy-inducing treat-
ments. We found that PLD participated in trophic re-
sponses of muscle cells in culture, and observed an
in vivo hypertrophic effect of increased PLD expression.
We then investigated the consequences of alterations in
PLD activity on mTOR signaling pathway, and found
that both mTORC1 and mTORC2 are modulated by
PLD and may participate in the trophic responses we
observed in L6 myotubes. Thus, our results support the
view that targeting PLD could represent a novel way to
influence muscle mass.

Results

Changes in PLD activity have trophic effects on

muscle cells

We first addressed the contribution of PLD to the main-
tenance of muscle cell functionality by studying the con-
sequences of PLD inhibition in fully differentiated L6
myotubes. Preventing PA formation by PLD can be
achieved by the addition of a primary alcohol that reroutes
PLD activity to the production of phosphatidylalcohol.
Myotubes were treated for 48 hrs with either 0.5% 1-
butanol, or 0.5% 2-butanol that is not recognized by PLD
and serves as a negative control. Immunofluorescent label-
ling of myosin heavy chain (MHC) was subsequently used
to measure myotube area. 1-butanol induced a marked de-
crease of myotube area, whereas 2-butanol had no signifi-
cant effects (Figure 1A). Creatine kinase (CK) activity of
treated myotubes was also determined to evaluate muscle
cell functionality. 1-butanol had a stronger negative effect
on myotube CK activity than 2-butanol (Figure 1B). In
addition, MHC content of myotubes was found more mark-
edly lowered by 1-butanol than by 2-butanol (Figure 1C).
These results suggest that inhibiting PLD activity induces
an atrophy of myotubes, that is reflected by a decreased
cell size and a loss of muscle proteins. Because concerns
have been raised about the effect of primary alcohols as an
index of PLD involvement in cell responses [26,27], we
assessed the effects of small molecule inhibitors of PLD.
Treatment of myotubes by FIPI, an inhibitor of both PLD
isoforms [28], resulted in a marked atrophy, thereby
confirming the involvement of PLD inhibition in the
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Figure 1 Atrophic effects of 1-butanol on L6 myotubes. Differentiated L6 myotubes were cultured for 2 days in the presence of 0.5% 1-butanol, or
0.5% 2-butanal, or left untreated (control). (A) Myotubes were immuno-stained with anti-MHC antibody, and myotube area was measured as reported
in [30]. Data are means + SE of n = 8. (B) Myotubes were homogenized and creatine kinase activity was measured. Data are means + SE of n= 3.

(C) MHC content of myotubes was assessed by ELISA. Data are means + SE of n = 3. ***: different from control, p < 0.001, **: p < 0.01, *: p < 0.05.
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above observations (Figure 2A,B). We then used PLD
isoform-specific inhibitors [29], and observed that PLD1
inhibition affected myotube chatacteristics, whereas PLD2
inhibition had no significant effect (Figure 2A,B). Finally,
the respective role of PLD isoforms was further assessed
by using PLD1- or PLD2-siRNA. This approach confirmed
that PLD1 depletion was more efficient than PLD2 depletion
to decrease myotube area and CK activity (Figure 3A,B).
Conversely, we found adenovirus-mediated overexpression
of PLD1 to significantly increase myotube area and CK ac-
tivity as compared with control cells, whereas PLD2 over-
expression had no significant effect (Figure 3C,D). These

observations confirmed that PLD1 positively regulates
muscle cells. To verify that enzymatic activity is required
for PLD1 trophic effects, we treated PLD1-overexpressing
myotubes with PLD inhibitors. As expected, the dual PLD
inhibitor FIPI and the PLDI1-specific inhibitor both
suppressed the hypertrophy induced by PLDI1 over-
expression, whereas the PLD2-specific inhibitor had no
sigificant effect (Figure 3E).

Next, we assessed the in vivo relevance of these obser-
vations. We injected a PLD1-encoding adenovirus in the
right gastrocnemius of mice, the left gastrocnemius be-
ing injected with an adenovirus encoding GFP as a
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Figure 2 Atrophic effects of PLD inhibitors on L6 myotubes. Differentiated L6 myotubes were cultured for 2 days without inhibitor (control),
or in the presence of 0.5 uM FIPI, or 100 nM PLD1-inhibitor, or 100 nM PLD2-inhibitor. (A) Myotube area was measured as above. Data are means + SE
of n=10. (B) Myotubes were homogenized and creatine kinase activity was measured. Data are means £ SE of n = 4. ***: different from control,

p <0.0001; ** p<001.
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Figure 3 (See legend on next page.)
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Figure 3 The modulation of PLD expression has trophic effects in L6 myotubes. (A) Effects of siRNA-mediated PLD depletion on the area of
differentiated myotubes. An irrelevant siRNA was used for control. Results shown are the means + SE of 3 experiments, with 10 repeats. **: different
from control siRNA, p < 0.01. The down-regulation of PLD isoforms was verified by RT-qPCR (right panel). Means + SE of n =3 or 4 are shown.

*** different from control siRNA, p < 0.0001; **: p < 0.01; *: p=0.05. (B) Effects of siRNA-mediated PLD depletion on CK activity of differentiated
myotubes. Means + SE of n = 4 are shown. **: different from control siRNA-treated cells, p < 0.01. (C) Effects of adenovirus-mediated PLD
overexpression on myotube area. An adenovirus encoding GFP was used for control. Shown are the means + SE of 8 experiments with 10 replicates.
***. different from GFP-adenovirus infected cells, p < 0.0001. The overexpression of PLD isoforms was verified by immunoblotting of HA-tagged PLDs
(right panel). (D) Effects of Adenovirus-mediated PLD overexpression on myotube CK activity. Means + SE of n = 5. ***: different from GFP-adenovirus
infected cells, p < 0.001. (E) Effect of PLD inhibition on the hypertrophic response of myotubes overexpressing PLD1. Myotubes were infected with
GFP- or PLD1-adenovirus and simultaneously treated with PLD inhibitors as detailed in Figure 2 legend. Results are shown as means + SE of 10 to 20
replicates. **: different from GFP-adenovirus infected cells, p = 0.002; ***: different from PLD1-adenovirus infected cells, p < 0.001; NS: not significantly
different from PLD1-adenovirus infected cells.

control. Muscles were dissected 10 days following injec-
tion, and PLD1 overexpression was verified (Figure 4A).
Measurement of myofibre cross sectional area (CSA)
demonstrated a significant increase in myofibre size in
PLD1-injected muscles as compared with GFP-injected
ones, as shown by a shift of the CSA distribution curve to-
wards higher values (Figure 4B,C). Taking advantage of

the HA-tag fused to our PLD1-expressing construct, we
then compared the respective CSA of myofibres express-
ing or not the fusion protein, in sections of PLD1-injected
muscles. Immunofluorescent labeling of recombinant
HA-tagged PLD1 (Additional file 1) followed by CSA
measurement confirmed a significant increase (16%) in
the size of PLD1-expressing fibres (Figure 4D).
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Figure 4 PLD1 overexpression in mice results in muscle hypertrophy. Adenovirus encoding PLD1 or GFP were respectively injected in the
right and the left gastrocnemius of mice. (A) PLD1 overexpression was assessed by RT-gPCR of hPLD1 performed in both GFP- and PLD1-injected
gastrocnemius muscles. Means + SE of n =5 are shown. ***: p < 0.0001. (B) Myofibre CSA measurements from transverse sections of gastrocnemius
muscles injected with either GFP-adenovirus or PLD1-adenovirus. The mean CSA + SE of 5 animals were compared by a paired t-test. **: p=0.01.

(C) Myofibre CSA distributions in GFP-adenovirus injected and PLD1-adenovirus injected muscles. Means + SE of n =5 are shown. **: p < 0.01; *:

p < 0.05. (D) CSA of HA-PLD1 expressing fibres were compared to the CSA of non-PLD1 expressing fibres in sections of right gastrocnemius. **:

p <001 (means + SE of 247 PLD1" and 149 PLD1" counted fibres).
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PLD and PA counteract the atrophic response of
myotubes induced by catabolic agents

Muscle cell atrophy can be induced in vivo and in vitro
by synthetic glucocorticoids such as dexamethasone
[31,32]. We investigated the effects of PLD isoform
overexpression in dexamethasone-treated myotubes. As
expected, dexamethasone induced a marked atrophy of
myotubes, as evidenced by reduced myotube size and
CK activity. Interestingly, this atrophic effect was sup-
pressed in PLD1-overexpressing cells, but not affected
by PLD2 overexpression (Figure 5A,B). Moreover, inhib-
ition of PLD activity by FIPI restored the atrophic effect
of dexamethasone in PLDI1-overexpressing myotubes
(Figure 5C). Next, we mimicked PLD activation by
adding exogenous PA to dexamethasone-treated cells.
We found PA addition able to partially restore both
myotube size and CK activity (Figure 5D,E). We then
used another agent able to induce atrophy of muscle
cells, the pro-inflammatory cytokine TNFa [33,34]. We
observed that the addition of exogenous PA suppressed
the negative effects of TNFa on both myotube size and
CK activity (Figure 6A,B). Taken together, these data
demonstrate that both PLD1 overexpression and ex-
ogenous PA supply had an anti-atrophic effect, in the
presence of two different atrophy-inducing treatments.

Modulation of PLD activity affects the expression

of atrogenes

Muscle atrophy is closely related to changes in the expres-
sion of a set of genes called atrogenes [35], that include
the E3 ubiquitin ligases Murfl and Atrogin-1 involved in
the proteasome-dependent muscle protein catabolism
[36]. Cell proteolytic systems are under the positive con-
trol of Foxo transcription factors, in particular Foxo3 [37].
To get insight into PLD action on muscle proteolytic ma-
chinery, we assessed the expression of Murfl, Atrogin-1
and Foxo3 transcripts in L6 myotubes subjected to PLD
modulation. As shown in Figure 7A, we observed a strong
inhibition of the basal expression of the three genes specif-
ically in cells overexpressing PLD1, but not in PLD2-
overexpressing cells. Furthermore, the siRNA-mediated
depletion of PLD1 induced a marked increase in Murfl
and Foxo3 expression, whereas the down-regulation of
PLD2 had no significant effect (Figure 7B). From here we
deduced that PLD1 hypertrophic effects may be related to
its capacity to down-regulate the basal expression of genes
involved in proteolysis. To confirm the role of PLD in the
negative control of atrogene expression, we then treated
myotubes with the PLD inhibitor FIPI. We observed that
PLD inhibition markedly increased atrogene mRNA levels
(Figure 7C). We next evaluated the effects of a PA treat-
ment on atrogene expression induced by dexamethasone.
In agreement with its pro-atrophic properties, we found
dexamethasone to induce a robust expression of the
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atrogenes. However, these effects were significantly low-
ered by the addition of exogenous PA (Figure 7D). On the
whole, these observations show that PLD and PA are able
to down-regulate atrogene expression, both in basal condi-
tions and in dexamethasone-induced atrophy.

PLD1 effects on muscle cells are mediated by mTOR

PLD being an upstream regulator of the mTOR pathway,
we next assessed whether the activity of mTOR is re-
quired for the hypertrophic effect of PLD1 over-
expression. To this end, we used the PP242 inhibitor,
which blocks both mTORC1 and mTORC2 complexes
[38]. In line with published work showing that mTORC1
is inhibited in muscle atrophy, we observed a marked re-
duction of myotube size and CK activity in myotubes
treated by PP242 alone (Figure 8A,B). Moreover, we
found the PP242 treatment to totally abolish the hyper-
trophic effects induced in myotubes by PLD1 over-
expression, supporting the view that PLD1 acted
through mTOR stimulation (Figure 8A,B).

We further explored the influence of PLD on mTOR
signaling by evaluating the consequences of PLD modula-
tion on the phosphorylation of S6K1 and Akt, which are
downstream effectors of, respectively, mTORC1 and
mTORC2. Whereas PLD1 overexpression increased S6K1
phosphorylation, siRNA-mediated PLD depletion had the
opposite effect. In the same line of observations, we found
the PLD inhibitors able to decrease S6K1 phosphorylation,
FIPI and the PLD1-specific inhibitor being more efficient
than the PLD2-specific inhibitor (Figure 9A). Moreover,
siRNA-mediated PLD1 depletion or PLD1 inhibition de-
creased Akt phosphorylation levels, whereas PLD1
overexpression had the opposite effect (Figure 9B). It is
worth mentionning that PLD2 overexpression induced
moderate, non significant, effects on S6K1 or Akt activa-
tion (Figure 9A,B). Together, these results suggest that, in
L6 myotubes, PLD is involved in both mTORCI and
mTORC2 activation, mainly through its PLD1 isoform.
We also observed that treating myotubes by dexametha-
sone or 1-butanol induced an inhibition of both S6K1 and
Akt phosphorylation, therefore confirming that in atrophy-
promoting conditions mTOR signaling is inhibited
(Additional file 2). Furthermore, we verified that siRNA-
mediated depletion of Rictor (and thus disruption of the
mTORC2 complex) decreased the phosphorylation of Akt,
confirming that Akt is a substrate for mTORC2 in L6
myotubes (Additional file 2).

Discussion

Skeletal muscle displays a striking plasticity, mature
muscle cells undergoing drastic changes in their size and
specific protein content to adapt the tissue to different
levels of mechanical stimulation or nutrient income, or
to hypercatabolic pathological situations [39]. mTOR
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Figure 5 PLD and PA protect L6 myotubes from dexamethasone-induced atrophy. (A) Differentiated myotubes were left untreated, or
were treated with 20 uM dexamethasone alone or in the presence of GFP-, or PLD1-, or PLD2-adenovirus for 2 days. Myotube area was then
assessed. Results are shown as means + SE of n = 10. ***: different from control, p < 0.001. ***: different from dexamethasone and GFP-adenovirus
treated cells, p < 0.001; NS: not significantly different from dexamethasone and GFP-adenovirus treated cells. (B) Creatine kinase activity was measured
in differentiated myotubes treated as above. Means + SE of n =4 replicates are shown. ***: different from control, p < 0.001; ***: different from GFP-
adenovirus infected cells treated with dexamethasone, p < 0.001. (C) Myotubes were infected with GFP- or PLD1-adenovirus and simultaneously
treated with dexamethasone as above, in the presence or absence of FIPI. Myotube area was measured and results are shown as means + SE of n=5
to 10. **: different from GFP-adenovirus infected cells, p < 001; *: p < 0.05; ***: different from PLD1-adenovirus infected cells, p < 0.001. (D) Myotubes
were treated for 2 days with 100 uM dexamethasone in the presence or absence of 100 uM PA, and myotube area was assessed. Means + SE of n=6

submitted to an adenoviral infection.

to 8 are shown. ***: different from control, p < 0.0001; ***: different from dexamethasone treated cells, p < 0.0001. (E) CK activity was measured in
myotubes treated as above. Means + SE of n =4 are shown. ***: different from control, p < 0.0001; **: different from dexamethasone treated cells,
p < 0.01. Note that a lower dexamethasone concentration was used in the experiments of panels A, B, C, to prevent an excessive stress of the cells

signaling is known to play a central role in the mecha-
nisms that control muscle plasticity [15]. The involve-
ment of PLD in muscle hypertrophy induced by
mechanical loading has been hypothesized, due to the
functional connection that exists between PLD activity
and mTOR signaling. Mechanical stimuli have been
shown to induce a PLD-dependent mTORCI1 activation in
isolated muscles, however the participation of PLD in the
hypertrophic response was not demonstrated [24,25].
Here we report that, in differentiated myotubes, the
suppression of PLD activity obtained by either addition
of a primary alcohol or specific inhibitors, or by RNA
interference, results in an atrophic effect, as evidenced
by a size reduction and a decrease in the content in
muscle proteins such as creatine kinase or MHC. Con-
versely, we observed that the overexpression of PLD is
able to induce marked hypertrophic effects, showing that
muscle cell size is positively regulated by PLD. In both

the cases of PLD inhibition and overexpression, we ob-
served that trophic effects depend on PLD1, rather than
PLD2. Although these two PLD isoforms display a
strong sequence homology, and are both dependent on
PIP2 for their activity, they exhibit quite different regula-
tory properties and subcellular localizations. Whereas
PLD1 has a low basal activity in vitro and is activated by
small G proteins (ARF, Rho and Rac) and protein kinase
C, PLD2 has a high basal activity and does not respond
to the PLD1 activators. Moreover, under steady-state
conditions, PLD1 has a predominently perinuclear loca-
tion, whereas PLD2 is found at the plasma membrane,
which suggests that the isoforms have different bio-
logical functions [1-3]. The respective participation of
PLD1 and PLD2 in mTORC1 activation is still debated
[7,8]. Thus, PLD1 was shown to be indispensable for
amino-acid activation of mTORC1 [13]. Rheb, which is
implicated in the activation of mTORCI, directly
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activates PLD1 [12]. However, PLD1 and PLD2 domin-
ant negative mutants have both been found to suppress
mTORC1 and mTORC2 activity [10], and PLD2 over-
expression can activate mTORC1 [40]. Furthermore,
PLD2 was reported to form with mTOR and Raptor a
functional complex that is essential for mitogen stimula-
tion of S6K1 [41]. Thus it appears that both PLD
isoforms can be involved in mTOR regulation, depend-
ing on the cellular context. Although in our exerimental
setting PLD2 inhibition tended to decrease S6K1 phos-
phorylation, and thus mTORCI activity, this did not sig-
nificantly affect myotube size, suggesting that the impact
of PLD2 activity on mTOR is insufficient to regulate
downstream pathways.

We also observed that PLD1 overexpression induces a
hypertrophy of myofibres in vivo, similar to what observed
in L6 myotubes. The ability of PLD1 overexpression to

up-regulate cell size had been reported in non-muscle
HEK293 cells [13]. Our results further establish that PLD1
is able to induce hypertrophy of differentiated muscle
cells, and suggest that it may play a role in physiological
situations that impact muscle mass. In this regard, PLD
has been proposed to be a link between mechanical stimu-
lation of muscle and mTORCI activation resulting in
hypertrophic response [42]. This hypothesis is supported
by the co-localization that exists in muscle tissue between
both PLD1 and PLD2 and the z-band protein a-actinin,
z-band being considered a focal point for mechanical
force transmission [24].

Our finding that PLD1 overexpression prevents the se-
vere myotube atrophy induced by dexamethasone treat-
ment shows that PLD1 has also a protective effect. This
observation is further confirmed by the effects of PA,
the product of PLD which directly binds to mTOR.
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Exogenous PA was indeed able to protect myotubes
against atrophy induced by both dexamethasone and
TNFq, indicating that the catalytic activity of PLD is re-
quired for its anti-atrophic effects. This was confirmed
by our observation that the inhibition of PLD activity by
FIPI suppresses both the hypertrophic and anti-atrophic
effects of PLDI1. Surprisingly, we did not observe a
hypertrophic effect of exogenous PA when added alone
to the myotubes (Figure 6). Therefore, it is likely that the
subcellular site of PA accumulation is critical for its
trophic effects, and that, in cells submitted to PLD1
overexpression PA accumulation occurs in a compartment
that is inefficiently reached by exogenous PA. PA target(s)
might become more sensitive to PA supply under atrophic
conditions, and could be affected by lower concentrations
of the compound, explaining why exogenous PA addition
had an anti-atrophic effect.

The positive trophic effects of PLD1 or PA in basal
conditions and in the presence of dexamethasone were
both associated with a reduced expression of genes in-
volved in muscle protein breakdown, Murfl, Atrogin-1
and Foxo3.

We addressed the mechanism by which PLD exerts its
trophic effects by using PP242, a mTOR inhibitor di-
rected at the catalytic site of the kinase, and that thus in-
hibits the activity of both mTORC1 and mTORC2
complexes. Interestingly, compared with rapamycin
PP242 has been shown to more completely inhibit the
phosphorylation of mTORC1 substrates (e.g. 4E-BP1)
and mTORC2 substrates (e.g. Akt) [38]. PP242 treat-
ment blocked PLD1 hypertrophic effects, showing that
they rely on the activation of either mTORCI, or
mTORC?2, or of both complexes. This latter assumption
is supported by the enhanced phosphorylation of both
S6K1 and Akt observed in myotubes overexpressing

PLDI, and by the decreased phosphorylation of these
two effectors under PLD1 down-regulation or inhibition.

Protein homeostasis is under the control of the intri-
cate network of the Akt/mTOR signaling pathway. Akt
is a major inhibitor of proteolysis through the control of
Foxo transcription factors. In muscle, Foxo factors regu-
late both the proteasome-dependent degradation of spe-
cific muscle proteins, and the autophagic proteolysis
[37]. The mTORC2 complex formed by mTOR associ-
ated with Rictor is able to phosphorylate and activate
Akt, whereas the mTORC1 complex formed by mTOR
and Raptor is indirectly activated by Akt, through the
phosphorylation of the tuberous sclerosis complex [6].
Activated mTORC]1 is known to enhance protein trans-
lation through the phosphorylation of its substrates
S6K1 and 4E-BP1, and to inhibit autophagy [6]. Thus, it
is likely that the hypertrophic and anti-atrophic effects
that PLD exerts on differentiated myotubes rely on the
activation of both mTORC1 and mTORC2 complexes.
This hypothesis is in agreement with the findings of
Toschi et al. who showed that PLD and PA are required
for the formation and activity of both mTORCI1 and
mTORC2 [10]. Studies carried out with transgenic
mouse models have not discovered a role for mTORC2
in muscle mass regulation, since contrary to what ob-
served in mice with mTORCI-deficient muscle, the ani-
mals with genetically disrupted mTORC2 in muscle do
not display an obvious phenotype in standard conditions
[19]. It is however conceivable that the muscles of these
mTORC2 mutant animals develop altered trophic re-
sponses that would need to be explored upon exposure
to chronic mechanical loading or atrophy-promoting
treatments. Based on all these observations, we propose
in Figure 10 a novel model depicting the action of
phospholipase D within muscle tissue.
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Conclusions

Muscle atrophy occurs in a variety of pathological states
such as cancer, renal insufficiency, diabetes and sepsis.
The loss of skeletal muscle constitutes a major health
problem as it leads to reduced mobility and quality of
life, lowered response to treatments, and decreased life
expectancy. Studies carried out on murine models of
cancer cachexia have shown that reversing muscle loss
dramatically prolongs animal survival, highlighting the
usefulness of treatments preserving muscle mass [43].
The present work, by showing the protective effects of
PLD and PA against dexamethasone- and TNFa-induced
muscle cell atrophy points out the PLD pathway as a

possible target for therapeutical interventions aiming at
preserving muscle tissue in pathological situations. Im-
portantly, the ability of stable phosphonate analogs of
PA to activate mTORCI signaling in cell cultures [44]
suggests that these compounds could present a thera-
peutic potential which deserves further investigation.

Methods

Materials and reagents

ECL detection reagent was from Pierce Thermo Fisher
Scientific (Brebieres, France). Bradford protein assay was
from Bio-Rad (Marnes-La-Coquette, France). Arginine-
vasopressin  (AVP), compound PP242, 5-Fluoro-2-
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indolyldeschlorohalopemide (FIPI), dioctanoyl-PA, dexa-
methasone and myosin heavy chain were purchased from
Sigma-Aldrich (LIsle-d’abeau, France). Selective inhibitors
of PLD1 (CAY10593) and PLD2 (CAY10594) were sup-
plied by Cayman Chemical Co. (Ann Arbor, USA). Re-
combinant rat TNFa was from Immunotools (Friesoythe,
Germany). Anti-phospho-Thr389/Thr412-S6K1 antibody,
anti-S6K1 antibody, anti-phospho-Ser473-Akt antibody
and anti-Akt antibody (which recognize all three Akt
isoforms) were from Cell Signaling Technology (Danvers,
USA). Anti-sarcomeric myosin heavy chain MF-20 anti-
body was from Developmental Studies Hybridoma Bank,
University of Iowa (Iowa City, USA). Anti-HA tag antibody
was from Covence (Rueil-Malmaison, France). Anti-
laminin antibody was from Sigma-Aldrich. HRP-conjugated
anti-mouse- and anti-rabbit-IgG antibodies were from Jack-
son Immunoresearch Laboratories (Soham, UK).

Cell culture

L6 myoblasts were maintained in Dulbecco’s modified
Eagle’s medium (DMEM) with 4.5 g/l glucose, sup-
plemented with 10% (v/v) fetal bovine serum at 37°C
and 5% CO,. To induce differentiation, cells were seeded
at a density of 5.10° cells per well in 6-well plates, grown
to confluence, shifted to DMEM supplemented with 1%
fetal bovine serum and 107 M AVP, and cultured for
5 days. The obtained myotubes were then treated with
the appropriate agent for 2 days, or with 15 ng/mL re-
combinant rat TNFa for 3 days to induce atrophy.
Dioctanoyl-PA stock solution was obtained by solubiliz-
ing the compound in Tris pH 8 buffer at a concentration
of 50 mM.

Short interfering RNA (siRNA) transfection

The siRNA used were targeted to rat PLD1 sequence 5'-
AAGTTAAGAGGAAATTCAAGC- 3] rat PLD2 se-
quence 5-GACACAAAGTCTTGATGAG-3; rat PLD1/2
sequence 5'-GAAATGGAGCCATCCCTCA-3'". Control
siRNA was purchased from Eurogentec (Angers, France).
siRNAs targeting Rictor and Raptor have been described
in [22].

The transfection of siRNAs was performed using
Hiperfect reagent (Qiagen, Courtaboeuf, France) with
50 nM siRNA for 48 hours; the medium was changed
after 24 hours of transfection.

Adenoviral constructions and cell infection

Recombinant adenoviral constructs carrying the cDNA
of interest (hHA-PLD1b, hHA-PLD2 or GFP) were gener-
ated as previously described [45]. Infections of myotubes
were performed at a multiplicity of infection of 100 (with
regard to initial myoblast number) in complete medium.
After 24 hours of incubation in the presence of viral parti-
cles, the medium was changed and cells were cultured for
additional 24 hours. Under these conditions, most of the
cells were positive for GFP when infected with a GFP ex-
pressing adenovirus.

Measurement of myotube area

Differentiated myotubes were fixed with 3.7% formalde-
hyde for 20 minutes at room temperature, permeabilized
with 0.1% Triton for 10 minutes, and unspecific labeling
was blocked with 1% BSA for 20 minutes. Anti-Myosin
MEF-20 antibody (1:50) was incubated for 1 hour. After
washing by 1% BSA in PBS, rhodamine-conjugated anti-
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mouse IgG antibody was added diluted 1:500 in 1% BSA
and incubated for 1 hour. Nuclei were stained with
1 pg/mL 4,5-diamidino-2-phenylindole (DAPI) for 3 mi-
nutes. Cells were examined by immunofluorescence mi-
croscopy with an Axiovert 200 microscope, and images
acquired using Axiovision 4.1 software (Carl Zeiss,
Gottingen, Germany). Differentiated myotubes, but not
myoblasts, were evenly labeled on their entire surface.
Their area was measured by the method of Sultan et al.
[30], using NIH Image ] software. To verify that the vari-
ous treatments did not induce a cell loss leading to
underestimation of myotube area, we evaluated the
number of DAPI-stained nuclei in the entire fields, and
found no significant loss of nuclei in atrophy-promoting
conditions (not shown).

Assay of creatine kinase activity

Cells were scraped with 500 pl of ice-cold lysis buffer
containing 20 mM Tris—HCl, 100 mM NacCl, 1% Triton
and protease inhibitor cocktail (pH 7.6). Lysates were
kept on ice during 15 minutes and cleared by centrifuga-
tion at 13,000 g for 15 minutes. The creatine kinase activ-
ity assay was performed by using a CK — NAC LD B kit
from Sobioda (Montbonnot, France), which allows to
monitor at 340 nm the kinetics of NADPH formation. The
assay was performed in 96-well plates, with 4 puL of sample
and 100 pL of reagent per well, for 20 minutes at 30°C.

ELISA of myosin heavy chain

Cells were scraped in 300 pL ice-cold RIPA buffer,
vortexed and centrifuged at 10,000 g for 10 minutes.
The assay was carried out in 96-well plates on 50 pL of
1:50 diluted samples. The wells were evaporated to dry-
ness overnight at 37°C and washed twice with cold PBS,
using an automatic plate washer (ELx50 Autostrip
Washer from Bio-Tek Instruments, Inc.). Unspecific
binding sites were saturated with 100 pL of 0.3% BSA in
PBS for 30 minutes at 37°C. Samples were then incu-
bated with 50 pL MF-20 antibody diluted 1:100 in PBS,
for 1 hour at 37°C. After a new washing step in 0.2%
Tween 20 in PBS, incubation with 50 pL of secondary
HRP-conjugated anti-mouse IgG antibody diluted 1:3000
was performed for 1 hour at 37°C. Plates were washed 5
times, 50 pL of TMB substrate (Sigma-Aldrich) were
added to each well, and 50 pL 0.5 N H,SO, were added
after 5 min to stop color reaction. Optical Density was
read at 450 nm. A standard curve was obtained with
purified myosin heavy chain.

Western blotting

Cells were lyzed as for CK assay, in the presence of
10 mM sodium pyrophosphate, 10 mM glycero-
phosphate, 50 mM NaF, 1.5 mM NazVO,. Cell lysates
were analyzed by SDS/PAGE, and proteins were
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transferred onto PVDF membranes blocked with 5%
BSA in Tris-buffered saline/0.1% Tween 20, and incu-
bated with appropriate antibodies following manufac-
turers’ recommendations. Immunoblots were revealed
with ECL detection system (Pierce) and quantified with
Image | software. SDS-PAGE was performed using 10%
polyacrylamide gels for S6K1 and Akt. In the case of
PLDs, samples were subjected to SDS-PAGE on 8%
polyacrylamide gels, in the presence of 4 M urea.

In vivo experiments

5 week-old male BALB/c mice were obtained from
Charles River France. Animals were housed in the ani-
mal facility under standard conditions. Adenovirus en-
coding PLD1 (10” infectious units in 100 pL PBS) were
injected in the right gastrocnemius, the left gastrocne-
mius being injected with the same amount of control
GFP-encoding adenovirus. The animals were sacrificed
10 days post-injection, gastrocnemius muscles were dis-
sected from both hind-limbs, frozen in liquid N,-cooled
isopentane and stored at —80°C for either histological or
molecular analyses. Muscle cryo-sections (10 pm) were
stained with Hematoxylin-Eosin, and fibre cross sec-
tional areas (at least 300 fibres per muscle) were mea-
sured by using NIH Image ] software. Alternatively,
sections from the PLD1-injected muscles were immuno-
labeled for laminin and for HA-tag, to respectively deter-
mine fibre outline and detect PLD1-expressing fibres.
Fibre CSA was determined as above.

Mice were treated in strict accordance to the guide-
lines of the Institutional Animal Care and Use Commit-
tee and to relevant national and European legislation,
throughout the experiments.

Reverse transcription and real-time PCR

Total RNA was isolated from L6 myotubes using Trizol
Reagent (Life Technologies, Saint-Aubin, France). 1 pg
of total RNA was used for reverse transcription, in the
presence of 100 U Superscript II (Life Technologies),
random hexamers and oligo dT. Real-time PCR was
performed with Fast Start DNA Master Sybr green kit
using Rotor-Gene 6000 (Corbett research, Mortlake,
Australia). Data were analyzed with LightCycler software
(Roche Diagnostics, Meylan, France) and normalized to
TATA box binding protein (TBP) housekeeping gene
transcripts. Specific sense and antisense primers used for
amplification were as follows: rPLD1 sense: GGTCAGA
AAGATAACCCAGG, rPLD1 anti-sense: GAAGCGAGA
CAGCGAAATGG; rPLD2 sense: TTGCTGGCTGTG
TGTCTGGC, rPLD2 antisense: GGACCTCCAGAGA
CACAAAG; hPLD1 sense: AAAGCGTGACAGTGAAA
TGG, hPLD1 anti-sense: GGCCATCAAGATAGCCAA
GG; Atrogin-1 sense: CTCTGCCAGTACCACTTCTC,
Atrogin-1 anti-sense: ATGGTCAGTGCCCCTCCAGG;
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Murfl sense: TGCATCTCCATGCTGGTGGC, Murfl
anti-sense: CTTCTTCTCGTCCAGGATGG; Foxo3a
sense: GAGAGCAGATTTGGCAAAGG, Foxo3a anti-
sense: CCTCATCTCCACACAGAACG; TBP sense:
TGGTGTGCACAGGAGCCAAG, TBP anti-sense: TTC
ACATCACAGCTCCCCAC.

Statistical analyses
The statistical significance of data was assessed by
ANOVA and Fisher test, using StatView software.

Additional files

Additional file 1: Comparison of the CSA of PLD1-expressing and
non expressing fibres in PLD1 adenovirus-injected muscles.

(A) Muscle transversal sections were immuno-labeled for laminin and for
HA-tagged PLD1. (B) The distributions of CSA of PLD1-expressing and
non expressing fibres are shown.

Additional file 2: Effects of various agents on the phosphorylation
of mTORC1 substrate S6K1 and mTORC2 substrate Akt. (A) Myotubes
were treated for 2 days with 0.1% 1-butanol or 0.1% t-Butanol as a
control. (B) Myotubes were left untreated, or treated for 2 days with

50 uM or 100 uM dexamethasone. (C) Myotubes were transfected for

2 days with control siRNA (si-C), or siRNA directed against Raptor
(si-Rapt), or Rictor (si-Rict). Phospho-Thr389/412-S6K1, total SEK1, Ph-Ser473-
Akt, total Akt, were then detected by immunoblotting.
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