T. Batchelor, A. Sorensen, T. Ed, W. Zhang, and D. Duda, AZD2171, a Pan-VEGF Receptor Tyrosine Kinase Inhibitor, Normalizes Tumor Vasculature and Alleviates Edema in Glioblastoma Patients, Cancer Cell, vol.11, issue.1, pp.83-95, 2007.
DOI : 10.1016/j.ccr.2006.11.021

B. Lemasson, T. Christen, X. Tizon, R. Farion, and N. Fondraz, Assessment of multiparametric MRI in a human glioma model to monitor cytotoxic and anti-angiogenic drug effects, NMR in Biomedicine, vol.57, issue.(6 Suppl 16), pp.473-482, 2011.
DOI : 10.1002/nbm.1611

URL : https://hal.archives-ouvertes.fr/inserm-00607949

S. Sourbron and D. Buckley, Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability, Physics in Medicine and Biology, vol.57, issue.2, pp.1-33, 2012.
DOI : 10.1088/0031-9155/57/2/R1

L. Ostergaard, Principles of cerebral perfusion imaging by bolus tracking, Journal of Magnetic Resonance Imaging, vol.33, issue.6, pp.710-717, 2005.
DOI : 10.1002/jmri.20460

T. Franiel, B. Hamm, and H. Hricak, Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer, European Radiology, vol.1, issue.3, pp.616-626, 2011.
DOI : 10.1007/s00330-010-2037-7

M. Marinovich, F. Sardanelli, S. Ciatto, E. Mamounas, and M. Brennan, Early prediction of pathologic response to neoadjuvant therapy in breast cancer: Systematic review of the accuracy of MRI, The Breast, vol.21, issue.5, 2012.
DOI : 10.1016/j.breast.2012.07.006

K. Donahue, R. Weisskoff, and D. Burstein, Water diffusion and exchange as they influence contrast enhancement, Journal of Magnetic Resonance Imaging, vol.14, issue.1, pp.102-110, 1997.
DOI : 10.1002/jmri.1880070114

P. Tofts, Modeling tracer kinetics in dynamic Gd-DTPA MR imaging, Journal of Magnetic Resonance Imaging, vol.11, issue.1, pp.91-101, 1997.
DOI : 10.1002/jmri.1880070113

G. Brix, F. Kiessling, R. Lucht, S. Darai, and K. Wasser, Microcirculation and microvasculature in breast tumors: Pharmacokinetic analysis of dynamic MR image series, Magnetic Resonance in Medicine, vol.4, issue.2, pp.420-429, 2004.
DOI : 10.1002/mrm.20161

D. Buckley, L. Kershaw, and G. Stanisz, Cellular-interstitial water exchange and its effect on the determination of contrast agent concentration in vivo: Dynamic contrast-enhanced MRI of human internal obturator muscle, Magnetic Resonance in Medicine, vol.54, issue.5, pp.1011-1019, 2008.
DOI : 10.1002/mrm.21748

S. Donaldson, C. West, S. Davidson, B. Carrington, and G. Hutchison, -weighted dynamic contrast-enhanced MRI: Application in carcinoma of the cervix, Magnetic Resonance in Medicine, vol.16, issue.3, pp.691-700, 2010.
DOI : 10.1002/mrm.22217

URL : https://hal.archives-ouvertes.fr/hal-01154812

D. Yablonskiy and E. Haacke, Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime, Magnetic Resonance in Medicine, vol.7, issue.6, pp.749-763, 1994.
DOI : 10.1002/mrm.1910320610

V. Kiselev and S. Posse, Analytical Theory of Susceptibility Induced NMR Signal Dephasing in a Cerebrovascular Network, Physical Review Letters, vol.81, issue.25, p.5696, 1998.
DOI : 10.1103/PhysRevLett.81.5696

J. Jensen and R. Chandra, Strong field behavior of the NMR signal from magnetically heterogeneous tissues, Magnetic Resonance in Medicine, vol.40, issue.2, pp.226-236, 2000.
DOI : 10.1002/(SICI)1522-2594(200002)43:2<226::AID-MRM9>3.0.CO;2-P

A. Sukstanskii and D. Yablonskiy, Gaussian approximation in the theory of MR signal formation in the presence of structure-specific magnetic field inhomogeneities, Journal of Magnetic Resonance, vol.163, issue.2, pp.236-247, 2003.
DOI : 10.1016/S1090-7807(03)00131-9

S. Sourbron, M. Heilmann, A. Biffar, C. Walczak, and J. Vautier, -measurement, Magnetic Resonance in Medicine, vol.7, issue.3, pp.672-681, 2009.
DOI : 10.1002/mrm.22042

H. Schmiedeskamp, M. Straka, R. Newbould, G. Zaharchuk, and J. Andre, Combined spin- and gradient-echo perfusion-weighted imaging, Magnetic Resonance in Medicine, vol.63, issue.1, pp.30-40, 2012.
DOI : 10.1002/mrm.23195

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374915

C. Quarles, D. Gochberg, J. Gore, and T. Yankeelov, A theoretical framework to model DSC-MRI data acquired in the presence of contrast agent extravasation, Physics in Medicine and Biology, vol.54, issue.19, pp.5749-5766, 2009.
DOI : 10.1088/0031-9155/54/19/006

S. Sourbron, M. Heilmann, C. Walczak, J. Vautier, and L. Schad, *-relaxivity contrast imaging: First results, Magnetic Resonance in Medicine, vol.32, issue.5, 2012.
DOI : 10.1002/mrm.24383

R. Salomir, B. De-senneville, and C. Moonen, A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility, Concepts in Magnetic Resonance, vol.23, issue.1, pp.26-34, 2003.
DOI : 10.1002/cmr.b.10083

URL : https://hal.archives-ouvertes.fr/hal-00307981

J. Marques and R. Bowtell, Application of a Fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility, Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, vol.65, issue.1, pp.65-78, 2005.
DOI : 10.1002/cmr.b.20034

P. Bandettini and E. Wong, Effects of biophysical and physiologic parameters on brain activation-inducedR2* andR2 changes: Simulations using a deterministic diffusion model, International Journal of Imaging Systems and Technology, vol.7, issue.2-3, pp.133-152, 1995.
DOI : 10.1002/ima.1850060203

L. Klassen and R. Menon, NMR Simulation Analysis of Statistical Effects on Quantifying Cerebrovascular Parameters, Biophysical Journal, vol.92, issue.3, pp.1014-1021, 2007.
DOI : 10.1529/biophysj.106.087965

S. Valable, B. Lemasson, R. Farion, M. Beaumont, and C. Segebarth, study, NMR in Biomedicine, vol.90, issue.3, pp.1043-1056, 2008.
DOI : 10.1002/nbm.1278

URL : https://hal.archives-ouvertes.fr/inserm-00861168

I. Troprès, L. Lamalle, M. Péoc-'h, R. Farion, and Y. Usson, In vivo assessment of tumoral angiogenesis, Magnetic Resonance in Medicine, vol.88, issue.Suppl, pp.533-541, 2004.
DOI : 10.1002/mrm.20017

M. Beaumont, B. Lemasson, R. Farion, C. Segebarth, and C. Rémy, Characterization of Tumor Angiogenesis in Rat Brain Using Iron-Based Vessel Size Index MRI in Combination with Gadolinium-Based Dynamic Contrast-Enhanced MRI, Journal of Cerebral Blood Flow & Metabolism, vol.10, issue.10, pp.1714-1726, 2009.
DOI : 10.1002/nbm.881

URL : https://hal.archives-ouvertes.fr/inserm-00410316

M. Dobre, K. Ugurbil, and M. Marjanska, Determination of blood longitudinal relaxation time (T1) at high magnetic field strengths, Magnetic Resonance Imaging, vol.25, issue.5, pp.733-735, 2007.
DOI : 10.1016/j.mri.2006.10.020

J. Zhao, C. Clingman, M. Nrvinen, R. Kauppinen, and P. Van-zijl, Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T, Magnetic Resonance in Medicine, vol.41, issue.3, pp.592-597, 2007.
DOI : 10.1002/mrm.21342

A. Deistung, A. Rauscher, J. Sedlacik, J. Stadler, and S. Witoszynskyj, Susceptibility weighted imaging at ultra high magnetic field strengths: Theoretical considerations and experimental results, Magnetic Resonance in Medicine, vol.55, issue.5, pp.1155-1168, 2008.
DOI : 10.1002/mrm.21754

T. Christen, B. Lemasson, N. Pannetier, R. Farion, and C. Segebarth, Evaluation of a quantitative blood oxygenation level-dependent (qBOLD) approach to map local blood oxygen saturation, NMR in Biomedicine, vol.29, issue.1, pp.393-403, 2011.
DOI : 10.1002/nbm.1603

URL : https://hal.archives-ouvertes.fr/inserm-00629822

L. Bihan and D. , Di_usion and Perfusion Magnetic Resonance Imaging: Applications to Functional Mri, 1995.

B. Marty, J. Flament, C. Giraudeau, L. Bihan, D. Mériaux et al., Apparent diffusion coefficient of gd-based contast agents assessed in vivo in the rat brain using dynamic T1 mapping, 2010.

M. Hall and D. Alexander, Convergence and Parameter Choice for Monte-Carlo Simulations of Diffusion MRI, IEEE Transactions on Medical Imaging, vol.28, issue.9, pp.1354-1364, 2009.
DOI : 10.1109/TMI.2009.2015756

T. Christen, G. Zaharchuk, N. Pannetier, R. Serduc, and N. Joudiou, Quantitative MR estimates of blood oxygenation based on T2*: A numerical study of the impact of model assumptions, Magnetic Resonance in Medicine, vol.107, issue.5, pp.1458-1468, 2012.
DOI : 10.1002/mrm.23094

URL : https://hal.archives-ouvertes.fr/inserm-00753894

R. Kennan, J. Zhong, and J. Gore, Intravascular susceptibility contrast mechanisms in tissues, Magnetic Resonance in Medicine, vol.87, issue.1, pp.9-21, 1994.
DOI : 10.1002/mrm.1910310103

J. Boxerman, L. Hamberg, B. Rosen, and R. Weisskoff, Mr contrast due to intravascular magnetic susceptibility perturbations, Magnetic Resonance in Medicine, vol.34, issue.4, pp.555-566, 1995.
DOI : 10.1002/mrm.1910340412

A. Pathak, B. Ward, and K. Schmainda, A novel technique for modeling susceptibility-based contrast mechanisms for arbitrary microvascular geometries: The finite perturber method, NeuroImage, vol.40, issue.3, pp.1130-1143, 2008.
DOI : 10.1016/j.neuroimage.2008.01.022

M. Pellerin, T. Yankeelov, and M. Lepage, Incorporating contrast agent diffusion into the analysis of DCE-MRI data, Magnetic Resonance in Medicine, vol.49, issue.6, pp.1124-1134, 2007.
DOI : 10.1002/mrm.21400

G. Pollack, The role of aqueous interfaces in the cell, Advances in Colloid and Interface Science, vol.103, issue.2, pp.173-196, 2003.
DOI : 10.1016/S0001-8686(02)00095-7

L. Bihan and D. , The ???wet mind???: water and functional neuroimaging, Physics in Medicine and Biology, vol.52, issue.7, pp.57-90, 2007.
DOI : 10.1088/0031-9155/52/7/R02

URL : https://hal.archives-ouvertes.fr/hal-00349653

V. Kiselev, On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI, Magnetic Resonance in Medicine, vol.44, issue.6, pp.1113-1122, 2001.
DOI : 10.1002/mrm.1307

J. Dickson, T. Ash, G. Williams, S. Harding, and T. Carpenter, Quantitative BOLD: The effect of diffusion, Journal of Magnetic Resonance Imaging, vol.58, issue.4, pp.953-961, 2010.
DOI : 10.1002/jmri.22151

L. Risser, F. Plouraboué, A. Steyer, P. Cloetens, L. Duc et al., From Homogeneous to Fractal Normal and Tumorous Microvascular Networks in the Brain, Journal of Cerebral Blood Flow & Metabolism, vol.93, issue.2, pp.293-303, 2007.
DOI : 10.1126/science.272.5261.551

URL : https://hal.archives-ouvertes.fr/hal-00135600

C. Xu, W. Schmidt, I. Galinovic, K. Villringer, and B. Hotter, The Potential of Microvessel Density in Prediction of Infarct Growth: A Two-Month Experimental Study in Vessel Size Imaging, Cerebrovascular Diseases, vol.33, issue.4, pp.303-309, 2012.
DOI : 10.1159/000335302

R. Guibert, C. Fonta, L. Risser, and F. Plouraboué, Coupling and robustness of intra-cortical vascular territories, NeuroImage, vol.62, issue.1, pp.408-417, 2012.
DOI : 10.1016/j.neuroimage.2012.04.030

URL : https://hal.archives-ouvertes.fr/hal-00706736

D. Novikov, M. Reisert, and V. Kiselev, Susceptibilty-induced increase of aparent diffusion coefficient: BOLD effect behind diffusion fMRI, ISMRM 2012, 2012.

S. Lawrence, K. Owen, D. Wang, and D. , A two-stage approach for measuring vascular water exchange and arterial transit time by diffusion-weighted perfusion MRI, Magnetic Resonance in Medicine, vol.19, issue.5, pp.1275-1284, 2012.
DOI : 10.1002/mrm.23104

T. Yankeelov, J. Luci, L. Debusk, P. Lin, and J. Gore, Incorporating the effects of transcytolemmal water exchange in a reference region model for DCE-MRI analysis: Theory, simulations, and experimental results, Magnetic Resonance in Medicine, vol.56, issue.2, pp.326-335, 2008.
DOI : 10.1002/mrm.21449