T. W. Anderson, An Introduction to Multivariate Statistical Analysis, 3rd revised ed. Wiley Series in Probability and Statistics, 2003.

Y. Benjamini and D. Yekutieli, The control of the false discovery rate in multiple testing under dependency, Ann. Statist, vol.29, pp.1165-1188, 2001.

F. Ferraty and P. Vieu, Nonparametric functional data analysis. Springer Series in Statistics, p.62008, 2006.

P. Hall, I. V. Keilegorn, E. L. Lehmann, and J. P. Romano, Two-sample tests in functional data analysis starting from discrete data Testing Statistical Hypotheses, Statistica Sinica, vol.17, pp.1511-1531, 2005.

F. Pesarin and L. Salmaso, Advances in Permutation Testing Approach Working Paper, 2009.

F. Pesarin and L. Salmaso, Permutation Tests for Complex Data: Theory, Applications and Software, Series in Probability and Statistics, 2010.
DOI : 10.1002/9780470689516

D. Pigoli, J. A. Aston, I. L. Dryden, and P. Secchi, Distances and Inference for Covariance Functions Technical Report No, 2012.

J. O. Ramsay and B. W. Silverman, Functional Data Analysis, 2005.

C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applications Wiley Series in Probability and Statistics Approximation Theorems of Mathematical Statistics . Wiley series in probability and mathematical statistics 413, p.595165, 1971.

M. S. Srivastava, Some Tests Concerning the Covariance Matrix in High Dimensional Data, JOURNAL OF THE JAPAN STATISTICAL SOCIETY, vol.35, issue.2, pp.251-272, 2005.
DOI : 10.14490/jjss.35.251

M. S. Srivastava, Multivariate Theory for Analyzing High Dimensional Data, JOURNAL OF THE JAPAN STATISTICAL SOCIETY, vol.37, issue.1, pp.53-86, 2007.
DOI : 10.14490/jjss.37.53

M. S. Srivastava and H. Yanagihara, Testing the equality of several covariance matrices with fewer observations than the dimension, Journal of Multivariate Analysis, vol.101, issue.6, pp.1319-1329, 2010.
DOI : 10.1016/j.jmva.2009.12.010

J. D. Storey, The positive false discovery rate: a Bayesian interpretation and the q -value, 62055) R Development Core Team (2012). R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, pp.2013-2035, 2003.
DOI : 10.1214/aos/1074290335