L. Arnold, A. Henry, F. Poron, Y. Baba-amer, N. Van-rooijen et al., Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, J. Exp. Med, vol.204, pp.1071-1081, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00136917

H. B. Bae, J. W. Zmijewski, J. S. Deshane, J. M. Tadie, D. D. Chaplin et al., AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils, FASEB J, vol.25, pp.4358-4368, 2011.

E. Y. Chung, J. Liu, Y. Homma, Y. Zhang, A. Brendolan et al., Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1, Immunity, vol.27, pp.952-964, 2007.

B. E. Clausen, C. Burkhardt, W. Reith, R. Renkawitz, and I. Forster, Conditional gene targeting in macrophages and granulocytes using LysMcre mice, Transgenic Res, vol.8, pp.265-277, 1999.

V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott et al., , 1998.

, Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF, J. Clin. Invest, vol.101, pp.890-898

C. G. Freire-de-lima, Y. Q. Xiao, S. J. Gardai, D. L. Bratton, W. P. Schiemann et al., , 2006.

, Apoptotic cells, through transforming growth factor-beta, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages, J. Biol. Chem, vol.281, pp.38376-38384

S. Galic, M. D. Fullerton, J. D. Schertzer, S. Sikkema, K. Marcinko et al., Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity, J Clin Invest, vol.121, pp.4903-4915, 2011.

F. Geissmann, S. Jung, and D. R. Littman, Blood monocytes consist of two principal subsets with distinct migratory properties, Immunity, vol.19, pp.71-82, 2003.

F. Ginhoux, F. Tacke, V. Angeli, M. Bogunovic, M. Loubeau et al., Langerhans cells arise from monocytes in vivo, Nat. Immunol, vol.7, pp.265-273, 2006.

S. Giri, N. Nath, B. Smith, B. Viollet, A. K. Singh et al., 5-aminoimidazole-4carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase, J Neurosci, vol.24, pp.479-487, 2004.

M. A. Gronski, J. M. Kinchen, I. J. Juncadella, N. C. Franc, and K. S. Ravichandran, An essential role for calcium flux in phagocytes for apoptotic cell engulfment and the anti-inflammatory response, Cell Death. Differ, vol.16, pp.1323-1331, 2009.

C. B. Guest, E. L. Deszo, M. E. Hartman, J. M. York, K. W. Kelley et al., , 2008.

, Ca2+/calmodulin-dependent kinase kinase alpha is expressed by monocytic cells and regulates the activation profile, PLoS One, vol.3, p.1606

D. G. Hardie, AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function, Genes Dev, vol.25, pp.1895-1908, 2011.

A. Haschemi, P. Kosma, L. Gille, C. R. Evans, C. F. Burant et al., The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism, Cell Metab, vol.15, pp.813-826, 2012.

S. A. Hawley, D. A. Pan, K. J. Mustard, L. Ross, J. Bain et al., Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase, Cell Metab, vol.2, pp.9-19, 2005.

S. A. Hawley, F. A. Ross, C. Chevtzoff, K. A. Green, A. Evans et al., Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation, Cell Metab, vol.11, pp.554-565, 2010.

J. E. Heredia, L. Mukundan, F. M. Chen, A. A. Mueller, R. C. Deo et al., Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration, Cell, vol.153, pp.376-388, 2013.

R. L. Hurley, K. A. Anderson, J. M. Franzone, B. E. Kemp, A. R. Means et al., The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases, J Biol Chem, vol.280, pp.29060-29066, 2005.

H. W. Jeong, K. C. Hsu, J. W. Lee, M. Ham, J. Y. Huh et al., , 2009.

, Berberine suppresses proinflammatory responses through AMPK activation in macrophages, Am. J. Physiol. Endocrinol. Metab, vol.296, pp.955-964

A. W. Joe, L. Yi, A. Natarajan, F. Le-grand, L. So et al., , 2010.

, Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis, Nat. Cell Biol, vol.12, pp.153-163

A. M. Johann, A. Von-knethen, D. Lindemann, and B. Brune, Recognition of apoptotic cells by macrophages activates the peroxisome proliferator-activated receptor-gamma and attenuates the oxidative burst, Cell Death Differ, vol.13, pp.1533-1540, 2006.

S. Kim, K. B. Elkon, M. , and X. , Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells, Immunity, vol.21, pp.643-653, 2004.

L. Lantier, R. Mounier, J. Leclerc, M. Pende, M. Foretz et al., Coordinated maintenance of muscle cell size control by AMP-activated protein kinase, FASEB J, vol.24, pp.3555-3561, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00484177

T. Lawrence and C. Fong, The resolution of inflammation: anti-inflammatory roles for NFkappaB, Int. J Biochem. Cell Biol, vol.42, pp.519-523, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00553129

T. Lawrence and G. Natoli, Transcriptional regulation of macrophage polarization: enabling diversity with identity, Nat. Rev. Immunol, vol.11, pp.750-761, 2011.

C. O. Martinez, M. J. Mchale, J. T. Wells, O. Ochoa, J. E. Michalek et al., Regulation of skeletal muscle regeneration by CCR2-activating chemokines is directly related to macrophage recruitment, Am J Physiol Regul Integr Comp Physiol, vol.299, pp.832-842, 2010.

F. O. Martinez, A. Sica, A. Mantovani, and M. Locati, Macrophage activation and polarization, Front Biosci, vol.13, pp.453-461, 2008.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nat. Rev. Immunol, vol.8, pp.958-969, 2008.

R. Mounier, L. Lantier, J. Leclerc, A. Sotiropoulos, M. Pende et al., Important role for AMPK{alpha}1 in limiting skeletal muscle cell hypertrophy, FASEB J, vol.23, pp.2264-2273, 2009.

V. A. Narkar, W. Fan, M. Downes, R. T. Yu, J. W. Jonker et al., Exercise and PGC-1alpha-independent synchronization of type I muscle metabolism and vasculature by ERRgamma, Cell Metab, vol.13, pp.283-293, 2011.

A. Peairs, A. Radjavi, S. Davis, L. Li, A. Ahmed et al., Activation of AMPK inhibits inflammation in MRL/lpr mouse mesangial cells, Clin Exp Immunol, vol.156, pp.542-551, 2009.

E. Perdiguero, P. Sousa-victor, V. Ruiz-bonilla, M. Jardi, C. Caelles et al., p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair, J. Cell Biol, vol.195, pp.307-322, 2011.

A. Rivollier, J. He, A. Kole, V. Valatas, and B. L. Kelsall, Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon, J Exp Med, vol.1, pp.139-155, 2012.

J. C. Rodriguez-prados, P. G. Traves, J. Cuenca, D. Rico, J. Aragones et al., Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation, J Immunol, vol.185, pp.605-614, 2010.

D. Ruffell, F. Mourkioti, A. Gambardella, P. Kirstetter, R. G. Lopez et al., A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair, Proc. Natl. Acad. Sci. USA, vol.106, pp.17475-17480, 2009.

M. Saclier, H. Yacoub-youssef, A. L. Mackey, L. Arnold, H. Ardjoune et al., Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration, Stem Cells, vol.31, pp.384-396, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00787108

D. Sag, D. Carling, R. D. Stout, and J. Suttles, Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype, J. Immunol, vol.181, pp.8633-8641, 2008.

D. Sun, C. O. Martinez, O. Ochoa, L. Ruiz-willhite, J. R. Bonilla et al., Bone marrow-derived cell regulation of skeletal muscle regeneration, FASEB J, vol.23, pp.382-395, 2009.

H. Tokumitsu, H. Inuzuka, Y. Ishikawa, M. Ikeda, I. Saji et al., STO-609, a specific inhibitor of the Ca(2+)/calmodulin-dependent protein kinase kinase, J Biol. Chem, vol.277, pp.15813-15818, 2002.

A. Uezumi, S. Fukada, N. Yamamoto, S. Takeda, and K. Tsuchida, Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle, Nat. Cell Biol, vol.12, pp.143-152, 2010.

D. Vats, L. Mukundan, J. I. Odegaard, L. Zhang, K. L. Smith et al., Oxidative metabolism and PGC-1beta attenuate macrophagemediated inflammation, Cell Metab, vol.4, pp.13-24, 2006.

A. Vignaud, J. P. Caruelle, I. Martelly, and A. Ferry, Differential effects of post-natal development, animal strain and long term recovery on the restoration of neuromuscular function after neuromyotoxic injury in rat, Comp Biochem. Physiol C. Toxicol. Pharmacol, vol.143, pp.1-8, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00109693

A. Vignaud, C. Hourde, S. Torres, J. P. Caruelle, I. Martelly et al., , 2005.

, Functional, cellular and molecular aspects of skeletal muscle recovery after injury induced by snake venom from Notechis scutatus scutatus, Toxicon, vol.45, pp.789-801

A. Woods, K. Dickerson, R. Heath, S. P. Hong, M. Momcilovic et al., Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMPactivated protein kinase in mammalian cells, Cell Metab, vol.2, pp.21-33, 2005.

J. Xing, Q. Wang, K. Coughlan, B. Viollet, C. Moriasi et al., Inhibition of AMPActivated Protein Kinase Accentuates Lipopolysaccharide-Induced Lung Endothelial Barrier Dysfunction and Lung Injury in Vivo, Am J Pathol, vol.182, pp.1021-1030, 2013.

C. O. Yi, B. T. Jeon, H. J. Shin, E. A. Jeong, K. C. Chang et al., Resveratrol activates AMPK and suppresses LPS-induced NF-kappaB-dependent COX-2 activation in RAW 264.7 macrophage cells, Anat Cell Biol, vol.44, pp.194-203, 2011.

X. Zhao, J. W. Zmijewski, E. Lorne, G. Liu, Y. J. Park et al., Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury, Am J Physiol Lung Cell Mol Physiol, vol.295, pp.497-504, 2008.

E. Zigmond, C. Varol, J. Farache, E. Elmaliah, A. T. Satpathy et al., Ly6C(hi) Monocytes in the Inflamed Colon Give Rise to Proinflammatory Effector Cells and Migratory Antigen-Presenting Cells, Immunity, vol.37, pp.1076-1090, 2012.

N. Bardeesy, M. Sinha, A. F. Hezel, S. Signoretti, N. A. Hathaway et al., Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation, Nature, vol.419, pp.162-167, 2002.

M. Foretz, S. Hebrard, J. Leclerc, E. Zarrinpashneh, M. Soty et al., Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state, J Clin. Invest, vol.120, pp.2355-2369, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00495746

F. Geissmann, S. Jung, and D. R. Littman, Blood monocytes consist of two principal subsets with distinct migratory properties, Immunity, vol.19, pp.71-82, 2003.

R. A. Miller, Q. Chu, L. J. Le, P. E. Scherer, R. S. Ahima et al., Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling, J Clin. Invest, vol.121, pp.2518-2528, 2011.

D. Montarras, C. Lindon, C. Pinset, D. , and P. , Cultured myf5 null and myoD null muscle precursor cells display distinct growth defects, Biol. Cell, vol.92, pp.565-572, 2000.

R. Mounier, L. Lantier, J. Leclerc, A. Sotiropoulos, M. Pende et al., Important role for AMPK{alpha}1 in limiting skeletal muscle cell hypertrophy, FASEB J, vol.23, pp.2264-2273, 2009.

E. Perdiguero, P. Sousa-victor, V. Ruiz-bonilla, M. Jardi, C. Caelles et al., p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair, J. Cell Biol, vol.195, pp.307-322, 2011.

K. Sakamoto, E. Zarrinpashneh, G. R. Budas, A. C. Pouleur, A. Dutta et al., Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKalpha2 but not AMPKalpha1, Am J Physiol Endocrinol. Metab, vol.290, pp.780-788, 2006.

U. Schleicher and C. Bogdan, Generation, culture and flow-cytometric characterization of primary mouse macrophages, Methods Mol Biol, vol.531, pp.203-224, 2009.

C. Sonnet, P. Lafuste, L. Arnold, M. Brigitte, F. Poron et al., Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems, J. Cell Sci, vol.119, pp.2497-2507, 2006.

E. R. Stanley, Murine bone marrow-derived macrophages, Methods Mol. Biol, vol.75, pp.301-304, 1997.