C. Mackenzie, J. Ibbotson, C. Cao, and A. Lomax, Hierarchical decomposition of laparoscopic surgery: a human factors approach to investigating the operating room environment, Minimally Invasive Therapy & Allied Technologies, vol.29, issue.3, pp.121-127, 2001.
DOI : 10.1080/136457001753192222

P. Jannin, M. Raimbault, X. Morandi, E. Seigneuret, and B. Gibaud, Design of a neurosurgical procedure model for multimodal image-guided surgery, Proceedings of Computer-Assisted Radiology and Surgery, pp.102-106, 2001.
DOI : 10.1016/S0531-5131(01)00025-5

T. Neumuth, G. Strauß, J. Meixensberger, H. Lemke, and O. Burgert, Acquisition of Process Descriptions from Surgical Interventions, Database and expert systems applications, pp.602-611, 2006.
DOI : 10.1007/11827405_59

P. Jannin and X. Morandi, Surgical models for computer-assisted neurosurgery, NeuroImage, vol.37, issue.3, pp.783-791, 2007.
DOI : 10.1016/j.neuroimage.2007.05.034

URL : https://hal.archives-ouvertes.fr/inserm-00185435

F. Lalys, D. Bouget, L. Riffaud, and P. Jannin, Automatic knowledge-based recognition of low-level tasks in ophthalmological procedures, International Journal of Computer Assisted Radiology and Surgery, vol.2, issue.4, pp.1-11, 2012.
DOI : 10.1007/s11548-012-0685-6

URL : https://hal.archives-ouvertes.fr/inserm-00695646

F. Lalys, L. Riffaud, D. Bouget, and P. Jannin, A Framework for the Recognition of High-Level Surgical Tasks From Video Images for Cataract Surgeries, IEEE Transactions on Biomedical Engineering, vol.59, issue.4, pp.1-1, 2012.
DOI : 10.1109/TBME.2011.2181168

URL : https://hal.archives-ouvertes.fr/inserm-00669682

N. Padoy, T. Blum, A. Ahmadi, H. Feussner, M. Berger et al., Statistical modeling and recognition of surgical workflow, Medical Image Analysis, vol.16, issue.3, pp.632-641, 2012.
DOI : 10.1016/j.media.2010.10.001

URL : https://hal.archives-ouvertes.fr/inria-00526493

B. Bhatia, T. Oates, Y. Xiao, and P. Hu, Real-time identification of operating room state from video, National Conference on Artificial Intelligence, p.1761, 2007.

T. Blum, H. Feussner, and N. Navab, Modeling and Segmentation of Surgical Workflow from Laparoscopic Video, International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp.400-407, 2010.
DOI : 10.1007/978-3-642-15711-0_50

L. Bouarfa, P. Jonker, and J. Dankelman, Discovery of high-level tasks in the operating room, Journal of Biomedical Informatics, vol.44, issue.3, pp.455-462, 2011.
DOI : 10.1016/j.jbi.2010.01.004

A. James, D. Vieira, B. Lo, A. Darzi, and G. Yang, Eye-Gaze Driven Surgical Workflow Segmentation, International conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp.110-117, 2007.
DOI : 10.1007/978-3-540-75759-7_14

A. Nara, K. Izumi, H. Iseki, T. Suzuki, K. Nambu et al., Surgical Workflow Monitoring Based on Trajectory Data Mining, New Frontiers in Artificial Intelligence, vol.101, issue.3, pp.283-291, 2011.
DOI : 10.1213/01.ane.0000167948.81735.5b

T. Neumuth, P. Jannin, J. Schlomberg, J. Meixensberger, P. Wiedemann et al., Analysis of surgical intervention populations using generic surgical process models, International Journal of Computer Assisted Radiology and Surgery, vol.56, issue.10, pp.59-71, 2011.
DOI : 10.1007/s11548-010-0475-y

URL : https://hal.archives-ouvertes.fr/inserm-00546456

J. Mckenna, The case for motion and time study in surgery. Frank and Lillian Gilbreth, Critical Evaluations in Business and Management, vol.2, p.279, 2003.

F. B. Gilbreth, Motion study in surgery, 1916.

C. J. Van-oostveen, H. Vermeulen, D. J. Gouma, P. J. Bakker, and D. T. Ubbink, Explaining the amount of care needed by hospitalised surgical patients: a prospective time and motion study, BMC Health Services Research, vol.54, issue.1, p.42, 2013.
DOI : 10.1016/S0895-4356(00)00363-2

D. Boer, K. De-wit, L. Davids, P. Dankelman, J. Gouma et al., Analysis of the quality and efficiency in learning laparoscopic skills, Surgical Endoscopy, vol.11, issue.5, pp.497-503, 2001.
DOI : 10.1007/s004640090002

A. Darzi and S. Mackay, Skills assessment of surgeons, Surgery, vol.131, issue.2, pp.121-124, 2002.
DOI : 10.1067/msy.2002.115831

N. Mehta, R. Haluck, M. Frecker, and A. Snyder, Sequence and task analysis of instrument use in common laparoscopic procedures, Surgical Endoscopy And Other Interventional Techniques, vol.16, issue.2, pp.280-285, 2002.
DOI : 10.1007/s004640080009

R. Malik, P. White, and C. Macewen, Using human reliability analysis to detect surgical error in endoscopic DCR surgery, Clinical Otolaryngology and Allied Sciences, vol.14, issue.2, pp.456-460, 2003.
DOI : 10.1046/j.1365-2273.2003.00745.x

C. Cao, C. Mackenzie, and S. Payandeh, Task and motion analyses in endoscopic surgery, Proceedings ASME Dynamic Systems and Control Division. Citeseer, pp.583-590, 1996.

G. Claus, W. Sjoerdsma, A. Jansen, and C. Grimbergen, Quantitative standardised analysis of advanced laparoscopic surgical procedures, Endoscopic surgery and allied technologies, vol.3, issue.4, p.210, 1995.

J. Ibbotson, C. Mackenzie, C. Cao, and A. Lomax, Gaze patterns in laparoscopic surgery, Studies in Health Technology and Informatics, pp.154-160, 1999.

L. Riffaud, T. Neumuth, X. Morandi, C. Trantakis, J. Meixensberger et al., Recording of Surgical Processes: A Study Comparing Senior and Junior Neurosurgeons During Lumbar Disc Herniation Surgery, Operative Neurosurgery, vol.67, pp.325-332, 2010.
DOI : 10.1227/NEU.0b013e3181f741d7

URL : https://hal.archives-ouvertes.fr/inserm-00546422

T. Neumuth, F. Loebe, and P. Jannin, Similarity metrics for surgical process models, Artificial Intelligence in Medicine, vol.54, issue.1, pp.15-27, 2011.
DOI : 10.1016/j.artmed.2011.10.001

URL : https://hal.archives-ouvertes.fr/hal-00905410

G. Forestier, F. Lalys, L. Riffaud, B. Trelhu, and P. Jannin, Classification of surgical processes using dynamic time warping, Journal of Biomedical Informatics, vol.45, issue.2, 2012.
DOI : 10.1016/j.jbi.2011.11.002

URL : https://hal.archives-ouvertes.fr/inserm-00669624

S. White, Introduction to BPMN, IBM Corporation, vol.31, 2004.

Z. Muehlen and M. , Organizational Management in Workflow Applications ??? Issues and Perspectives, Information Technology and Management, vol.5, issue.3/4, pp.271-291, 2004.
DOI : 10.1023/B:ITEM.0000031582.55219.2b

T. Neumuth, P. Jannin, J. Schlomberg, J. Meixensberger, P. Wiedemann et al., Analysis of surgical intervention populations using generic surgical process models, International Journal of Computer Assisted Radiology and Surgery, vol.56, issue.10, pp.59-71, 2010.
DOI : 10.1007/s11548-010-0475-y

URL : https://hal.archives-ouvertes.fr/inserm-00546456

S. Hiroaki and S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.26, pp.43-49, 1978.

T. Neumuth, P. Jannin, G. Strauss, J. Meixensberger, and O. Burgert, Validation of Knowledge Acquisition for Surgical Process Models, Journal of the American Medical Informatics Association, vol.16, issue.1, pp.72-80, 2009.
DOI : 10.1197/jamia.M2748

URL : https://hal.archives-ouvertes.fr/inserm-00344260

T. Gruber, Toward principles for the design of ontologies used for knowledge sharing?, International Journal of Human-Computer Studies, vol.43, issue.5-6, pp.907-928, 1995.
DOI : 10.1006/ijhc.1995.1081

C. Golbreich, S. Zhang, and O. Bodenreider, The foundational model of anatomy in OWL: Experience and perspectives, Web Semantics: Science, Services and Agents on the World Wide Web, vol.4, issue.3, pp.181-195, 2006.
DOI : 10.1016/j.websem.2006.05.007

K. Spackman, K. Campbell, and R. C-?-a, Snomed rt: a reference terminology for health care, Proceedings of the AMIA annual fall symposium, p.640, 1997.

O. Bodenreider, The Unified Medical Language System (UMLS): integrating biomedical terminology, Nucleic Acids Research, vol.32, issue.90001, pp.267-270, 2004.
DOI : 10.1093/nar/gkh061

URL : http://doi.org/10.1093/nar/gkh061

R. Navigli, Word sense disambiguation, ACM Computing Surveys, vol.41, issue.2, p.10, 2009.
DOI : 10.1145/1459352.1459355

A. Mori, A. Gangemi, G. Steve, F. Consorti, and E. Galeazzi, An ontological analysis of surgical deeds, Artificial Intelligence in Medicine, pp.361-372, 1997.
DOI : 10.1007/BFb0029469

T. Bentley and P. Brown, Exploring the ontology of surgical procedures in the read thesaurus, Meth Inform Med, vol.37, pp.420-425, 1998.

A. K. Jain, Data clustering: 50 years beyond K-means, Pattern Recognition Letters, vol.31, issue.8, pp.651-666, 2010.
DOI : 10.1016/j.patrec.2009.09.011

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Neumuth, G. Strauß, J. Meixensberger, H. Lemke, and O. Burgert, Acquisition of Process Descriptions from Surgical Interventions, Database and expert systems applications, pp.602-611, 2006.
DOI : 10.1007/11827405_59

J. Kruskal, Nonmetric multidimensional scaling: A numerical method, Psychometrika, vol.60, issue.2, pp.115-129, 1964.
DOI : 10.1007/BF02289694

J. Kruskal, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika, vol.5, issue.1, pp.1-27, 1964.
DOI : 10.1007/BF02289565

I. Pavlidis, P. Tsiamyrtzis, D. Shastri, A. Wesley, Y. Zhou et al., Fast by Nature - How Stress Patterns Define Human Experience and Performance in Dexterous Tasks, Scientific Reports, vol.43, 2012.
DOI : 10.1038/srep00305

L. Bouarfa, O. Akman, A. Schneider, P. P. Jonker, and J. Dankelman, real-time tracking of surgical instruments in endoscopic video, Minimally Invasive Therapy & Allied Technologies, vol.24, issue.3, pp.129-134, 2012.
DOI : 10.3109/13645706.2011.580764

T. Neumuth and C. Meißner, Online recognition of surgical instruments by information fusion, International Journal of Computer Assisted Radiology and Surgery, vol.299, issue.2, pp.297-304, 2012.
DOI : 10.1007/s11548-011-0662-5

M. Schijven, R. Reznick, O. Ten-cate, T. Grantcharov, G. Regehr et al., Transatlantic comparison of the competence of surgeons at the start of their professional career, British Journal of Surgery, vol.73, issue.3, pp.443-449, 2010.
DOI : 10.1002/bjs.6858