DOI : 10.1084/jem.97.5.695

J. Lee, S. Kotliarova, and Y. Kotliarov, Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines, Cancer Cell, vol.9, issue.5, pp.391-403, 2006.
DOI : 10.1016/j.ccr.2006.03.030

M. Erecinska and I. Silver, Tissue oxygen tension and brain sensitivity to hypoxia, Respiration Physiology, vol.128, issue.3, pp.263-276, 2001.
DOI : 10.1016/S0034-5687(01)00306-1

M. Hockel and P. Vaupel, Tumor Hypoxia: Definitions and Current Clinical, Biologic, and Molecular Aspects, JNCI Journal of the National Cancer Institute, vol.93, issue.4, pp.266-276, 2001.
DOI : 10.1093/jnci/93.4.266

URL : http://jnci.oxfordjournals.org/cgi/content/short/93/4/266

N. Platet, S. Liu, and M. Atifi, Influence of oxygen tension on CD133 phenotype in human glioma cell cultures, Cancer Letters, vol.258, issue.2, pp.286-290, 2007.
DOI : 10.1016/j.canlet.2007.09.012

URL : https://hal.archives-ouvertes.fr/inserm-00382779

D. Wion, M. Dematteis, and M. Nissou, Oxygen tension and cancer-cell culture: half a century of artifacts?, Med Sci, vol.24, pp.1093-1095, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00410499

D. Wion, T. Christen, E. Barbier, and J. Coles, PO2 Matters in Stem Cell Culture, Cell Stem Cell, vol.5, issue.3, pp.242-243, 2009.
DOI : 10.1016/j.stem.2009.08.009

URL : https://hal.archives-ouvertes.fr/inserm-00527773

Y. Rong, D. Durden, V. Meir, and E. , ???Pseudopalisading??? Necrosis in Glioblastoma: A Familiar Morphologic Feature That Links Vascular Pathology, Hypoxia, and Angiogenesis, Journal of Neuropathology & Experimental Neurology, vol.65, issue.6, pp.529-539, 2006.
DOI : 10.1097/00005072-200606000-00001

D. Brat, V. Meir, and E. , Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma, Laboratory Investigation, vol.84, issue.4, pp.397-405, 2004.
DOI : 10.1038/labinvest.3700070

D. Kondziolka, M. Bernstein, and L. Resch, Significance of hemorrhage into brain tumors: clinicopathological study, Journal of Neurosurgery, vol.67, issue.6, pp.852-857, 1987.
DOI : 10.3171/jns.1987.67.6.0852

Y. Soda, T. Marumoto, and D. Friedmann-morvinski, Transdifferentiation of glioblastoma cells into vascular endothelial cells, Proceedings of the National Academy of Sciences, vol.108, issue.11, pp.4274-4280, 2011.
DOI : 10.1073/pnas.1016030108

L. Ricci-vitiani, R. Pallini, and M. Biffoni, Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells, Nature, vol.200, issue.7325, pp.824-828, 2010.
DOI : 10.1038/nature09557

G. Sajithlal, T. Mcguire, J. Lu, and D. Beer-stolz, Endothelial-like cells derived directly from human tumor xenografts, International Journal of Cancer, vol.34, issue.Suppl 1, pp.2268-2278, 2010.
DOI : 10.1002/ijc.25251

C. Shaifer, J. Huang, and P. Lin, Glioblastoma cells incorporate into tumor vasculature and contribute to vascular radioresistance, International Journal of Cancer, vol.87, issue.9, pp.2063-2075, 2010.
DOI : 10.1002/ijc.25249

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2932815

R. Wang, K. Chadalavada, and J. Wilshire, Glioblastoma stem-like cells give rise to tumour endothelium, Nature, vol.459, issue.7325, pp.829-833, 2010.
DOI : 10.1038/nature09624

E. Harris and W. Nelson, VE-cadherin: at the front, center, and sides of endothelial cell organization and function, Current Opinion in Cell Biology, vol.22, issue.5, pp.651-658, 2010.
DOI : 10.1016/j.ceb.2010.07.006

D. Valle-perez, B. Martinez, V. Lacasa-salavert, and C. , Filamin B Plays a Key Role in Vascular Endothelial Growth Factor-induced Endothelial Cell Motility through Its Interaction with Rac-1 and Vav-2, Journal of Biological Chemistry, vol.285, issue.14, pp.10748-10760, 2010.
DOI : 10.1074/jbc.M109.062984

D. Brat, A. Castellano-sanchez, and S. Hunter, Pseudopalisades in Glioblastoma Are Hypoxic, Express Extracellular Matrix Proteases, and Are Formed by an Actively Migrating Cell Population, Cancer Research, vol.64, issue.3, pp.920-927, 2004.
DOI : 10.1158/0008-5472.CAN-03-2073

F. Wippold, M. Lammle, and F. Anatelli, Neuropathology for the neuroradiologist: palisades and pseudopalisades, AJNR Am J Neuroradiol, vol.27, pp.2037-2041, 2006.

G. Semenza, Hypoxia-Inducible Factors in Physiology and Medicine, Cell, vol.148, issue.3, pp.399-408, 2012.
DOI : 10.1016/j.cell.2012.01.021

B. Jiang, G. Semenza, C. Bauer, and H. Marti, Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension, Am J Physiol, vol.271, pp.1172-1180, 1996.

F. Dayan, D. Roux, M. Brahimi-horn, and J. Pouyssegur, The Oxygen Sensor Factor-Inhibiting Hypoxia-Inducible Factor-1 Controls Expression of Distinct Genes through the Bifunctional Transcriptional Character of Hypoxia-Inducible Factor-1??, Cancer Research, vol.66, issue.7, pp.3688-3698, 2006.
DOI : 10.1158/0008-5472.CAN-05-4564

URL : https://hal.archives-ouvertes.fr/hal-00321066

F. Dayan, M. Monticelli, J. Pouyssegur, and E. Pecou, Gene regulation in response to graded hypoxia: The non-redundant roles of the oxygen sensors and FIH in the HIF pathway, Journal of Theoretical Biology, vol.259, issue.2, pp.304-316, 2009.
DOI : 10.1016/j.jtbi.2009.03.009

URL : https://hal.archives-ouvertes.fr/hal-00554587

E. Bourseau-guilmain, L. Lemaire, A. Griveau, and E. Hervouet, In vitro expansion of human glioblastoma cells at non-physiological oxygen tension irreversibly alters subsequent in vivo aggressiveness and AC133 expression, Int J Oncol, vol.40, pp.1220-1229, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00733941

M. Dominguez, V. Hughes, and L. Pan, Vascular endothelial tyrosine phosphatase (VE-PTP)-null mice undergo vasculogenesis but die embryonically because of defects in angiogenesis, Proceedings of the National Academy of Sciences, vol.104, issue.9, pp.3243-3248, 2007.
DOI : 10.1073/pnas.0611510104

S. Baumer, L. Keller, and A. Holtmann, Vascular endothelial cell-specific phosphotyrosine phosphatase (VE-PTP) activity is required for blood vessel development, Blood, vol.107, issue.12, pp.4754-4762, 2006.
DOI : 10.1182/blood-2006-01-0141

URL : http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:bvb:12-bsb00060029-7

R. Nawroth, G. Poell, and A. Ranft, VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts, The EMBO Journal, vol.21, issue.18, pp.4885-4895, 2002.
DOI : 10.1093/emboj/cdf497

M. Winderlich, L. Keller, and G. Cagna, VE-PTP controls blood vessel development by balancing Tie-2 activity, The Journal of Cell Biology, vol.244, issue.4, pp.657-671, 2009.
DOI : 10.1016/j.immuni.2007.11.024

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711575

M. Mori, Y. Murata, and T. Kotani, Promotion of cell spreading and migration by vascular endothelial-protein tyrosine phosphatase (VE-PTP) in cooperation with integrins, Journal of Cellular Physiology, vol.13, pp.195-204, 2010.
DOI : 10.1002/jcp.22122

N. Quirici, D. Soligo, L. Caneva, and F. Servida, Differentiation and expansion of endothelial cells from human bone marrow CD133+ cells, British Journal of Haematology, vol.90, issue.1, pp.186-194, 2001.
DOI : 10.1126/science.285.5433.1553

M. Natsuizaka, S. Ohashi, and G. Wong, Insulin-like growth factor-binding protein-3 promotes transforming growth factor-{beta}1-mediated epithelial-tomesenchymal transition and motility in transformed human esophageal cells. Carcinogenesis, pp.1344-1353, 2010.

T. Schneider, M. Sailer, and S. Ansorge, Increased concentrations of transforming growth factor ??1 and ??2 in the plasma of patients with glioblastoma, Journal of Neuro-Oncology, vol.72, issue.1, pp.61-65, 2006.
DOI : 10.1007/s11060-005-9116-7

L. Selek, M. Dhobb, and B. Van-der-sanden, Existence of tumor-derived endothelial cells suggests an additional role for endothelial-to-mesenchymal transition in tumor progression, International Journal of Cancer, vol.128, issue.6, pp.1502-1503, 2011.
DOI : 10.1002/ijc.25446

URL : https://hal.archives-ouvertes.fr/inserm-00498732