L. Bihan and D. , Looking into the functional architecture of the brain with diffusion MRI, Nature Reviews Neuroscience, vol.4, issue.6, pp.469-80, 2003.
DOI : 10.1038/nrn1119

URL : https://hal.archives-ouvertes.fr/hal-00349696

B. J. Jellison, A. S. Field, J. Medow, M. Lazar, M. S. Salamat et al., Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns, Am. J. Neuroradiol, vol.25, issue.3, pp.356-69, 2004.

DOI : 10.1093/brain/60.4.389

M. Lazar, Mapping brain anatomical connectivity using white matter tractography, NMR in Biomedicine, vol.7, issue.7, pp.821-856, 2010.
DOI : 10.1002/nbm.1579

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503207

P. Basser, J. Mattiello, L. Bihan, and D. , MR diffusion tensor spectroscopy and imaging, Biophysical Journal, vol.66, issue.1, pp.259-67, 1994.
DOI : 10.1016/S0006-3495(94)80775-1

URL : https://hal.archives-ouvertes.fr/hal-00349721

T. Behrens, H. Johansen-berg, S. Jbabdi, M. Rushworth, and M. Woolrich, Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?, NeuroImage, vol.34, issue.1, pp.144-55, 2007.
DOI : 10.1016/j.neuroimage.2006.09.018

S. Mori, B. J. Crain, V. P. Chacko, and P. C. Van-zijl, Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging, Annals of Neurology, vol.40, issue.2, pp.265-269, 1999.
DOI : 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3

A. Stamm, P. Pérez, and C. Barillot, Diffusion directions imaging, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00608706

A. Stamm, P. Pérez, and C. Barillot, A new multi-fiber model for low angular resolution diffusion MRI, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp.936-939, 2012.
DOI : 10.1109/ISBI.2012.6235710

URL : https://hal.archives-ouvertes.fr/inserm-00858205

A. Stamm, P. Pérez, and C. Barillot, A new multi-directional fiber model for low angular resolution diffusion imaging, Proc. Intl, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00858206

O. Commowick, A. Stamm, R. Seizeur, P. Perez, C. Barillot et al., Multifiber deterministic streamline tractography of the corticospinal tract based on a new diffusion model, MICCAI DTI Tractography Challenge, pp.18-24, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00627893

N. Wiest-daesslé, O. Commowick, A. Stamm, P. Perez, C. Barillot et al., Comparison of 3 diffusion models to track the hand motor fibers within the corticospinal tract using functional, anatomical and diffusion mri, MICCAI Workshop on Computational Diffusion MRI (CDMRI'11), pp.150-157, 2011.

A. Stamm, O. Commowick, C. Barillot, and P. Pérez, An adaptive multi-modal particle filter for white matter probabilistic tractography, Inf. Process. Med. Imaging, pp.7917-594, 2013.

E. Stejskal and J. Tanner, Spin Diffusion Measurements: Spin Echoes in the Presence of a Time???Dependent Field Gradient, The Journal of Chemical Physics, vol.42, issue.1, pp.288-292, 1965.
DOI : 10.1063/1.1695690

C. Metzler-baddeley, M. J. O-'sullivan, S. Bells, O. Pasternak, and D. K. Jones, How and how not to correct for CSF-contamination in diffusion MRI, NeuroImage, vol.59, issue.2, pp.1394-403, 2012.
DOI : 10.1016/j.neuroimage.2011.08.043

P. Jupp and K. Mardia, A Unified View of the Theory of Directional Statistics, 1975-1988, International Statistical Review / Revue Internationale de Statistique, vol.57, issue.3, pp.261-294, 1989.
DOI : 10.2307/1403799

C. Pierpaoli, P. Jezzard, P. Basser, A. Barnett, D. Chiro et al., Diffusion tensor MR imaging of the human brain., Radiology, vol.201, issue.3, pp.637-685, 1996.
DOI : 10.1148/radiology.201.3.8939209

J. Veraart, W. Van-hecke, and J. Sijbers, Constrained maximum likelihood estimation of the diffusion kurtosis tensor using a Rician noise model, Magnetic Resonance in Medicine, vol.28, issue.3, pp.678-86, 2011.
DOI : 10.1002/mrm.22835

H. Gudbjartsson and S. Patz, The rician distribution of noisy mri data, Magnetic Resonance in Medicine, vol.3, issue.6, pp.910-914, 1995.
DOI : 10.1002/mrm.1910340618

M. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives, 2009.

M. Powell, A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation, pp.51-67, 1994.
DOI : 10.1007/978-94-015-8330-5_4

F. Zhang, E. R. Hancock, C. Goodlett, and G. Gerig, Probabilistic white matter fiber tracking using particle filtering and von Mises???Fisher sampling, Medical Image Analysis, vol.13, issue.1, pp.5-18, 2009.
DOI : 10.1016/j.media.2008.05.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771420

J. Pontabry, F. Rousseau, E. Oubel, C. Studholme, M. Koob et al., Probabilistic tractography using Q-ball imaging and particle filtering: Application to adult and in-utero fetal brain studies, Medical Image Analysis, vol.17, issue.3, 2012.
DOI : 10.1016/j.media.2012.11.004

URL : https://hal.archives-ouvertes.fr/hal-00873625

D. S. Tuch, Q-ball imaging, Magnetic Resonance in Medicine, vol.23, issue.6, pp.1358-72, 2004.
DOI : 10.1002/mrm.20279

A. Doucet, S. Godsill, and C. Andrieu, On sequential Monte Carlo sampling methods for Bayesian filtering, Statistics and Computing, vol.10, issue.3, pp.197-208, 2000.
DOI : 10.1023/A:1008935410038

J. Vermaak, A. Doucet, and P. Pérez, Maintaining multimodality through mixture tracking, Proceedings Ninth IEEE International Conference on Computer Vision, pp.1110-1116, 2003.
DOI : 10.1109/ICCV.2003.1238473

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Banerjee, I. Dhillon, J. Ghosh, and S. Sra, Clustering on the unit hypersphere using von Mises-Fisher distributions, J. Mach. Learn. Res, vol.6, pp.1345-1382, 2006.

N. Wiest-daesslé, S. Prima, P. Coupé, S. P. Morrissey, and C. Barillot, Rician Noise Removal by Non-Local Means Filtering for Low Signal-to-Noise Ratio MRI: Applications to DT-MRI, In: Med. Image Comput. Comput. Assist. Interv, pp.171-180, 2008.
DOI : 10.1007/978-3-540-85990-1_21