B. Krause, S. Schwarzenbock, M. Souvatzoglou, . Fdg, P. /. Pet et al., FDG PET and PET/CT, Recent Results Cancer Res, vol.187, pp.351-69, 2013.
DOI : 10.1007/978-3-642-10853-2_12

P. Jarritt, K. Carson, A. Hounsell, and D. Visvikis, The role of PET/CT scanning in radiotherapy planning, The British Journal of Radiology, vol.79, issue.special_issue_1, pp.27-35, 2006.
DOI : 10.1259/bjr/35628509

M. Hatt, D. Visvikis, O. Pradier, and C. Cheze-le-rest, Baseline 18F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer, European Journal of Nuclear Medicine and Molecular Imaging, vol.17, issue.1, pp.1595-606, 2011.
DOI : 10.1007/s00259-011-1834-9

URL : https://hal.archives-ouvertes.fr/inserm-00595534

P. Deron, K. Mertens, I. Goethals, S. Rottey, F. Duprez et al., Metabolic tumour volume. Prognostic value in locally advanced squamous cell carcinoma of the head and neck, Nuklearmedizin, vol.50, 2011.

M. Hatt, D. Groheux, A. Martineau, M. Espie, E. Hindie et al., Comparison Between 18F-FDG PET Image-Derived Indices for Early Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer, Journal of Nuclear Medicine, vol.54, issue.3, 2013.
DOI : 10.2967/jnumed.112.108837

URL : https://hal.archives-ouvertes.fr/hal-00748923

H. Lee, S. Hyun, K. Lee, B. Kim, J. Kim et al., Volume-Based Parameter of 18F-FDG PET/CT in Malignant Pleural Mesothelioma: Prediction of Therapeutic Response and Prognostic Implications, Annals of Surgical Oncology, vol.34, issue.1, pp.2787-94, 2010.
DOI : 10.1245/s10434-010-1107-z

T. Cazaentre, F. Morschhauser, M. Vermandel, N. Betrouni, T. Prangere et al., Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma, European Journal of Nuclear Medicine and Molecular Imaging, vol.29, issue.suppl, pp.494-504, 2010.
DOI : 10.1007/s00259-009-1275-x

S. Basu, T. Kwee, R. Gatenby, B. Saboury, D. Torigian et al., Evolving role of molecular imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and metastatic sites, a plausible explanation for failed attempts to cure malignant disorders The age of reason for FDG PET image-derived indices Radiomics: Extracting more information from medical images using advanced feature analysis Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis, Eur J Nucl Med Mol Imaging Eur J Nucl Med Mol Imaging. Eur J Cancer. Eur J Nucl Med Mol Imaging, vol.1240, pp.133-173, 2011.

F. Davnall, C. Yip, G. Ljungqvist, M. Selmi, F. Ng et al., Assessment of tumour heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging Are Pretreatment 18F-FDG PET Tumour Textural Features in Non-Small Cell Lung Cancer Associated with Response and Survival After Chemoradiotherapy?, J Nucl Med, vol.354, issue.16, pp.573-8919, 2012.

O. Sullivan, F. Wolsztynski, E. , O. Sullivan, J. Richards et al., A Statistical Modeling Approach to the Analysis of Spatial Patterns of FDG-PET Uptake in Human Sarcoma Intratumour heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in oesophageal cancer Spatial-Temporal [(18)F]FDG-PET Features for Predicting Pathologic Response of Oesophageal Cancer to Neoadjuvant Chemoradiation Therapy Exploring featurebased approaches in PET images for predicting cancer treatment outcomes Improved prognostic value of 18F- FDG PET using a simple visual analysis of tumour characteristics in patients with cervical cancer, Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies, pp.369-781162, 2003.

P. Galavis, C. Hollensen, N. Jallow, B. Paliwal, and R. Jeraj, Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters, Acta Oncologica, vol.45, issue.9, pp.1012-1018, 2010.
DOI : 10.1016/j.patcog.2008.08.011

A. Turzo, A. Gouret, P. Damine, F. Lamare, and Y. Bizais, Reproducibility of tumour uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET imaging Characterisation of SUV accuracy in FDG PET using 3-D RAMLA and the Philips Allegro PET scanner, Journal of Nuclear Medicine. Journal of Nuclear Medicine, vol.45, pp.103-129, 2004.

P. Therasse, S. Arbuck, E. Eisenhauer, J. Wanders, R. Kaplan et al., New Guidelines to Evaluate the Response to Treatment in Solid Tumors, JNCI: Journal of the National Cancer Institute, vol.92, issue.3, pp.205-221, 2000.
DOI : 10.1093/jnci/92.3.205

Y. Erdi, O. Mawlawi, S. Larson, M. Imbriaco, H. Yeung et al., Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer, Cancer. J Nucl Med, vol.8046, pp.2505-91342, 1997.

M. Hatt, C. Le-rest, C. Turzo, A. Roux, C. Visvikis et al., A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET, IEEE Transactions on Medical Imaging, vol.28, issue.6, pp.881-93, 2009.
DOI : 10.1109/TMI.2008.2012036

URL : https://hal.archives-ouvertes.fr/inserm-00372910

M. Hatt, C. Le-rest, C. Albarghach, N. Pradier, O. Visvikis et al., PET functional volume delineation: a robustness and repeatability study, European Journal of Nuclear Medicine and Molecular Imaging, vol.97, issue.12, pp.663-72, 2011.
DOI : 10.1007/s00259-010-1688-6

URL : https://hal.archives-ouvertes.fr/inserm-00574273

M. Hatt, C. Rest, C. Aboagye, E. Kenny, L. Rosso et al., Reproducibility of 18F-FDG and 3'-Deoxy-3'-18F-Fluorothymidine PET Tumor Volume Measurements, Journal of Nuclear Medicine, vol.51, issue.9, pp.1368-76, 2010.
DOI : 10.2967/jnumed.110.078501

URL : https://hal.archives-ouvertes.fr/inserm-00537774

C. Le-rest, C. Hatt, M. Visvikis, and D. , Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging, Int J Radiat Oncol Biol Phys. Eur J Nucl Med Mol Imaging, vol.7736, pp.1064-75, 2009.

E. Delong, D. Delong, and D. Clarke-pearson, Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach, Biometrics, vol.44, issue.3, pp.837-882, 1988.
DOI : 10.2307/2531595