A. Alessio and P. Kinahan, PET image reconstruction. Nuclear Medicine. H. e. a, 2006.

N. M. Alpert and A. Reilhac, Optimization of dynamic measurement of receptor kinetics by wavelet denoising, NeuroImage, vol.30, issue.2, pp.444-451, 2006.
DOI : 10.1016/j.neuroimage.2005.09.031

N. Boussion and C. Cheze-le-rest, Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging, European Journal of Nuclear Medicine and Molecular Imaging, vol.17, issue.2, pp.1064-1075, 2009.
DOI : 10.1007/s00259-009-1065-5

URL : https://hal.archives-ouvertes.fr/inserm-00537782

E. J. Candes, Fast Discrete Curvelet Transforms, Multiscale Modeling & Simulation, vol.5, issue.3, pp.861-899, 2006.
DOI : 10.1137/05064182X

E. J. Candès and D. L. Donoho, New Tight Frames of Curvelets and Optimal Representations of Objects with Smooth Singularities, 2002.

E. Cands, Ridgelets: Theory and Applications, pp.1-125, 1998.

S. G. Chang and . Yu, Adaptive wavelet thresholding for image denoising and compression, IEEE Transactions on Image Processing, vol.9, issue.9, pp.1532-1546, 2000.
DOI : 10.1109/83.862633

S. S. Chen, Atomic Decomposition by Basis Pursuit, SIAM Review, vol.43, issue.1, pp.129-159, 2001.
DOI : 10.1137/S003614450037906X

S. Chua and J. Dickson, PET imaging for prediction of response to therapy and outcome in oesophageal carcinoma, European Journal of Nuclear Medicine and Molecular Imaging, vol.17, issue.10, 2011.
DOI : 10.1007/s00259-011-1858-1

M. S. Crouse and R. D. Nowak, Wavelet-based statistical signal processing using hidden Markov models, IEEE Transactions on Signal Processing, vol.46, issue.4, pp.886-902, 1998.
DOI : 10.1109/78.668544

D. L. Donoho, De-noising by soft-thresholding Information Theory, IEEE Transactions on, vol.41, issue.3, pp.613-627, 1995.
DOI : 10.1109/18.382009

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, vol.81, issue.3, pp.425-455, 1994.
DOI : 10.1093/biomet/81.3.425

D. L. Donoho and I. M. Johnstone, Adapting to Unknown Smoothness via Wavelet Shrinkage, Journal of the American Statistical Association, vol.31, issue.432, pp.1200-1224, 1995.
DOI : 10.1080/01621459.1979.10481038

P. Dutilleux, An implementation of the 'algorithme a trous' to compute the wavelet transform'. Time-Frequency Methods and Phase Space, pp.298-304, 1987.

G. Easley and D. Labate, Sparse directional image representations using the discrete shearlet transform, Applied and Computational Harmonic Analysis, vol.25, issue.1, pp.25-46, 2008.
DOI : 10.1016/j.acha.2007.09.003

M. Hatt and C. Cheze-le-rest, A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET, IEEE Transactions on Medical Imaging, vol.28, issue.6, pp.881-893, 2009.
DOI : 10.1109/TMI.2008.2012036

URL : https://hal.archives-ouvertes.fr/inserm-00372910

D. Helbert and P. Carre, 3-D Discrete Analytical Ridgelet Transform, IEEE Transactions on Image Processing, vol.15, issue.12, pp.3701-3714, 2006.
DOI : 10.1109/TIP.2006.881936

URL : https://hal.archives-ouvertes.fr/hal-00331384

X. Huo, Sparse Image Representation via Combined Transforms, 1999.

S. A. Hyder and R. Sukanesh, An Efficient Algorithm for Denoising MR and CT Images Using Digital Curvelet Transform, Adv Exp Med Biol, vol.696, pp.471-480, 2011.
DOI : 10.1007/978-1-4419-7046-6_47

K. Jordan, IEC emission phantom appendix performance evaluation of positron emission tomographs, Med. Public Health Res, 1990.

F. Lamare and A. Turzo, Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE, Physics in Medicine and Biology, vol.51, issue.4, pp.943-962, 2006.
DOI : 10.1088/0031-9155/51/4/013

F. Lamare and A. Turzo, Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE, Physics in Medicine and Biology, vol.51, issue.4, pp.943-962, 2006.
DOI : 10.1088/0031-9155/51/4/013

L. Maitre, A. , and W. P. Segars, Incorporating Patient-Specific Variability in the Simulation of Realistic Whole-Body 18F-FDG Distributions for Oncology Applications, Proceedings of the IEEE, 2009.

L. Pogam, A. , and M. Hatt, Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography, Medical Physics, vol.37, issue.Suppl 2, pp.4920-4923, 2011.
DOI : 10.1007/s00259-010-1472-7

URL : https://hal.archives-ouvertes.fr/inserm-00707277

M. A. Lodge and A. Rahmim, Simultaneous measurement of noise and spatial resolution in PET phantom images, Physics in Medicine and Biology, vol.55, issue.4, pp.1069-1081, 2010.
DOI : 10.1088/0031-9155/55/4/011

S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.11, issue.7, pp.674-693, 1989.

S. G. Mallat, A wavelet tour of signal processing : the sparse way. Amsterdam, 2009.

A. J. Reader and S. Ally, One-pass list-mode EM algorithm for high-resolution 3-D PET image reconstruction into large arrays, IEEE Transactions on Nuclear Science, vol.49, issue.3, pp.693-699, 2002.
DOI : 10.1109/TNS.2002.1039550

L. Sendur and I. W. Selesnick, Bivariate shrinkage with local variance estimation, IEEE Signal Processing Letters, vol.9, issue.12, pp.438-441, 2002.
DOI : 10.1109/LSP.2002.806054

B. Shalchian and H. Rajabi, Assessment of the Wavelet Transform in Reduction of Noise from Simulated PET Images, Journal of Nuclear Medicine Technology, vol.37, issue.4, pp.223-228, 2009.
DOI : 10.2967/jnmt.109.067454

R. L. Shen, Noisy Image Segmentation by Modified Snake Model, J. Phys.: Conf. Ser, vol.48, p.369, 2006.

M. Shidahara and Y. Ikoma, PET kinetic analysis: wavelet denoising of dynamic PET data with application to parametric imaging, Annals of Nuclear Medicine, vol.20, issue.7, pp.379-386, 2007.
DOI : 10.1007/s12149-007-0044-9

Y. Y. Shih and J. C. Chen, Development of wavelet de-noising technique for PET images, Computerized Medical Imaging and Graphics, vol.29, issue.4, pp.297-304, 2005.
DOI : 10.1016/j.compmedimag.2004.12.002

E. P. Simoncelli, Modelling the joint statistics of images in the wavelet domain, 44th Annual Meeting, 1999.

J. L. Starck, Very High Quality Image Restoration by Combining Wavelets and Curvelets, SPIE conference on Signal and Image Processing: Wavelet Applications in Signal and Image Processing, 2001.

J. L. Starck and E. J. Candes, The curvelet transform for image denoising, IEEE Transactions on Image Processing, vol.11, issue.6, pp.670-684, 2002.
DOI : 10.1109/TIP.2002.1014998

J. L. Starck and J. Fadili, The Undecimated Wavelet Decomposition and its Reconstruction, IEEE Transactions on Image Processing, vol.16, issue.2, pp.297-309, 2007.
DOI : 10.1109/TIP.2006.887733

URL : https://hal.archives-ouvertes.fr/hal-00080092

J. L. Starck and F. Murtagh, Sparse image and signal processing : wavelets, curvelets, morphological diversity. Cambridge, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01132685

F. Tixier and M. Hatt, Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET imaging, Journal of Nuclear Medicine, 2012.

C. Tsoumpas and F. E. Turkheimer, Study of direct and indirect parametric estimation methods of linear models in dynamic positron emission tomography, Medical Physics, vol.13, issue.3, pp.1299-1309, 2008.
DOI : 10.1109/42.310884

F. E. Turkheimer and R. B. Banati, Modeling Dynamic PET-SPECT Studies in the Wavelet Domain, Journal of Cerebral Blood Flow and Metabolism, vol.14, issue.5, pp.879-893, 2000.
DOI : 10.1097/00004647-200005000-00015

F. E. Turkheimer and N. Boussion, PET Image Denoising Using a Synergistic Multiresolution Analysis of Structural (MRI/CT) and Functional Datasets, Journal of Nuclear Medicine, vol.49, issue.4, pp.657-666, 2008.
DOI : 10.2967/jnumed.107.041871

F. E. Turkheimer and M. Brett, Multiresolution Analysis of Emission Tomography Images in the Wavelet Domain, Journal of Cerebral Blood Flow & Metabolism, vol.4, issue.11, pp.1189-1208, 1999.
DOI : 10.1097/00004647-199911000-00003

A. R. Webb, Introduction to Biomedical Imaging, Medical Physics, vol.30, issue.8, 2003.
DOI : 10.1118/1.1589017

I. G. Zubal and C. R. Harrell, Computerized three-dimensional segmented human anatomy, Medical Physics, vol.21, issue.2, pp.299-302, 1994.
DOI : 10.1118/1.597290