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Abstract: Denoisingof Positron Emission Tomography (PET) imagesis a challenging task due to the inherent
low signatto-noise ratio (SNR) of the acquired dataA pre-processing denoisingtepmay facilitate and improve
the results offurther steps such as segmentatigmuantification or textural features characterizaton. Different
recent denoising techngues have been introduced and most statid-the-art methods arebased on filtering in
the wavelet domain. However, the wavelet transform suffers from some limitations due to its non optimal
processing of edge discontinties. More recently, a new multi scale geometric approach has been proposed,
namely the curvelet transform. It extends the waveletransform to account for directional properties in the
image. In order to address the issue of resolution loss associatedhwstandard denoising, we considered a
strategy combining the complementary waveleaind curvelet transforms. We compared different figures of
merit (e.g. SNR increase, noise decrease in homogeneous regions, resolution loss, and inté@nsgyon simulated
and clinical datasets with the proposedombined approach and the waveletonly and curveletonly filtering
techniques. The three methods led tan increase of the SNR. Regarding the quantitati¥ accuracy however, the
wavelet and curvelet onlydenoisingapproaches led tdarger biasesin the intensity and the contrastthan the
proposed combined algorithm This approach could become aralternative solution to filters currently used

after image reconstruction in clinical systems such athe Gaussian filter.

Keywords: positron emission tomography curvelet transform; wavelet transform; denoising filtering .



1. INTRODUCTION

Statistical analysis and quantitative evaluationPafkitron Enission Tomography PET) images often involve pre
processing steps. AT images are of low signab-noise ratio (SNR)the most common one consistsdehoising,
which is usually carried out via Gaussian filtering, as sometimes implemeniegtative image reconstruction
algorithms(Alessio and Kinahan 2006 owever, although Gaussian filtering may significantly increase the SNR, it
alsosmoothes the image, alteritige mean signah heterogeneous regiarisalsoblurs contours, which is to be clearly
avoided inPETimaging that is already characterizedibyited spatial resolutioand associated partial volume effects
PET denoising approaches basedfitiaring in the spatialfrequerty domain through wavelet transforfWwT) have
beenreported to improve the qualitativésual aspect and quantitation ofdges i a wide variety ofapplications
(Turkheimer et al. 2000; Shih et al. 2005; Alpdrak 2006)and are still under invagation in recent publications
(Shidahara et al. 2007; Tur&kimer et al. 2008; Boussion et al. 2009; Shalchian et al. 2009)

The WTwas initially introduced as a mathematical tool for signal processing witlstationarybehavior(Mallat
1989) In PET imaging, the WT can be applied to the spatial distribution of the radiotracer after reconstruction and can
convert the original voxel value distributiortana multiscalerepresentation. One of the relevant propeied/T is

its ability to obtain a sparse repemtation of the initial signavhile retaining a homogeneounsise distributionFor a
denoising application, this separation can be exploited to increase the SiiRrinyg out the noise in the wavelet
doman. The sparser the transformation, the more effigeits use for denoising. Whereas the 1D WT demonstrates
good performance at representing point singularities, it is not the case anymore in higher dimensions ldic& tf the
geometrical property afavelets. The 2D or 3D WT consequerntipvides a suboptimaépresentation of images with
highly anisotropic elements such as climéar structures (e.g. edg€Epsley et al. 2008Piscontinuities across such
structure affect all the wavelet coeffients on this structure and the denoising process yields overly smoothed results.
To address this issue, a wide variety of alternatiy@agrhes to image decompositizeive appeared in recent years,
initiated by the ridgelet transform (RTCands 1998)More recentlya new analysis technique calldtk curvelet
transform(CT) ha been developefCandés and Donoho 2002; Candes 20@&roving the properties of the ridgelet
approach. Image represematvia curveletis built upon multiscale analysis and geometnjith curvelets taking the
form of highly anisotropic elements with high directional sensitivity. This representdioovs additionageometrial
information and consequentlgads to a m@ accuratémage representation than through Vs illustrated irffigure

1. Although recently introduced and still under developméithas already generated interesting results in a wide
range of image processing applications including deno{Sitagck et al. 2002; Hyder and Sukanesh 20Hdjvever,

CT doesnot lead to an optimal sparse representatibrihe isotropic parts of the imagmmpared to WTand
consequentlyglenoisingoased on filtering in the curvelet dom&@urvelet denoisingzD) does notperformas well as
wavelet denoising (WDMallat 2009; Starck et al. 2010)herefore acombinedapproactexploitingthe advantages

providedby both techniques mayotentiallylead toimprovedperformance.
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Figure 1: 2D decompositiomf an edge via (a) the wavelet and (b) the curvelet transforms

In thiswork, we propose aewmethodology tdilter the noise irBD PET images using combinedmplementation

of the3D isotropic undecimated wavelet transform (IUDW3Jarck et al. 20079nd the3D discrete curvelet transform
(DCT) (Starck et al. 2002)ncorporatinga thresholihg of the coefficients based on a local adaptive ana{§ggadur
and Selesnick 2002J his approach will be referred to from here onwards as waeeletlet denoising (WCD)lhe
objective and principle of this combination is to recotleaiiks taCD) the edgethat have beediscarded byhe WD
step from theesidual image (the difference betwethe original image and the WD image), éméhcorporate tha
back intothe WD PET image. The idea of combining seaesuchrepresentations is not néiuo 1999; Chen 2001)
however, ilfmostcasesthe proposedlgorithms are computationally very expensiiege methodology proposed here
consists irensuringthat the reconstruction incorporaiaformation judged as significant by any of the two different
wavelet and curvelet representatio@me alternativeapproach consistin combining WD and CD, performed in
parallel on the initial noisy imaggstarck 2001) This approachs not straightforwardbecauseontrary towavelet
coefficiens, curvelets coefficients cannot be easlyatiallylocalizedin the original imagedue to the various steps
involved in their calculationA more straightforwaréind easieapproachpreviously proposedithin the context of
medial image segmentationpnsists in applying a CD on the residual imabtained fromWD (Shen 2006)This
methodonly consideredhowever the use dfasicwaveletand curveletransformsandits potential interest famage
denoisingor PET imaginghas never been investigatdthe main objective of this work walsereforethe evaluation

of such astraightforwardcombined wavelet and curveldgnoisingior PET imagingcompared withndependentD

or CD schemes. Tthe best ofour knowledgethis has not beempreviouslyconsideredor PET imagesdenoising
purposesalthough it presents promising properties. It is especially able to retain relevant details information (isotropic
as well as curvilinear structures) while discarding local ndike.ability ofeach methotb preserve local contraashd

guantitation wHie improving SNRwas investigatedn severakimulated and clinical datasets.



2. MATERIALS AND METHODS

The main assumption in the denoising process is that the observed data | contains the true signal S with additiv
Gaussiamoise N such as:

I=S+N (1)
Although raw PET data follow Poisson distribution, the noise in reconstructed PET images using iterative algorithms
cannot be considered Poisson and a Gaussian assumption can lélesxie and Kinahan 2006; Hatt et al. 2Q09)

Denoisingthenconsists of the three following steps:

Y AN
Z T(CYD
S A ()

whereA and A! arethe direct and inverse transform operators and T(t) the denoising operator depending on the
threshold value Detailsregardingmplementation of the operator T or selection of the threshaile tovered in the
following sections.

2.1Wavelet transform (WT)

Among the various available algorithms performing discrete wavelet transforms of an itagemon approach
widely used in PETmagingLV WKH ,VRWURSLF 8QGHFLPDWHG :DYHOHW 7UDQVIRU
algorithm (Dutilleux 1987) This translation invariance inducing methodology is of particular interest when
investigating image denadig). The non decimation makehe decomposition redundamd allows avoiding pseudo
Gibbs phenomenon after reconstructiohe draightforward and fast implementation without loss of any kasdvell

asthe easy navigation between the different scalebthaisotropic process are among the other practical advantages
Rl WKLV PHWKRGRORJ\ :H WXWddaithmUWdpeKdrml GeWTK(Btarck & &l.R2007)more
specificallya 3Dextension of this algorithinased on a binomial filter of ordel(de Pogam et al. 2011)n this work,

the first two layers were generated and then filténea subsequent step by the denoising mettestribedn the
following subsection.

2.2Waveletbased denoising (WD)

A first approachfor WD was called VisushrinkDonoho and Johnstone 1994) which a general threshold (now
XVXDOO\ GHQRWHG 38QL Y H Uaqiiring WekdthHddnd ReDi&igsD) ¥ 8 H ML O G 7InYhin€ X H V
FRPPRQ FDVHV LW LV L PR hds@ikhaye uPiHdpdssibléltolestimate it from the first sub
band of the WTusing equation 8here w are WT coefficients of the first stllmnd(Donoho and Johnstone 1994)

_ Mediar(w }/6745 3



The main practical interest of thigpproachs its easy implementatioralthough morgowerful denoisingechniques
have been developed. Among these, most of the wavasetd thresholding methods such as BayesS{tining et

al. 2000) or SureShrink(Donoho and Johnstone 1998%sume that wavelet coefficients are independent. The
SureShink appoach purposely devised for PETurkheimer et al. 1999% considered as a staiéthe-art denoising.
However, the assumption of independence of the wavelet coefficiepntesonabland the performance of WD can
be significantly improved taking into account the statistical relationsigpseen waveletodficients (Crouse et al.
1998; Simoncelli 1999; Sendur and Selesnick 2082new shrinkage function, depending on both the wavelet
coefficientw; and its parentv, (which isat the same spatial position ashut at the next coarser scgaMwasintroduced
(Sendur and Selesnick 200Zhe following assumons regarding the observed datee considered

y=w+n (4)

with, w = (Wi, W2), ¥ = (Y1, ¥2), and (A, nz) independent and identically distributeero mearGaussiarwith variance

4 estimated by equation Bhe following simple norGaussian bivariate probability distribution function (pdf) was

introduced to model the statistics of wavelet coefficieantdl capture the dependence between a given wavelet

coefficient and its parerf8endur and Selesnick 2002)

W ¥ g VW W) ©

Using Bayesian estimation theory withe maximuma posterioriestimator of w, a simple nonrlinear shrinkage

function (called BiShrink) can be derived from this model and generalizes the soft kttireglapproaci{Donoho

1995)
) ‘\/yf Y, IS%
wo Wyl (6)

For this functim, the smaller the parent valtie greater the shrinkage, which is consistent with other mddehss
study,we used aextended local adéige version in whichéis estimated usingreighborhoodSendur and Selesnick
2002) We investigatethe potential impact dive differentneighborhoodaizes (from 3o 13voxelg, as recommended
(Sendur and Selesnick 2002)

2.3 Curvelet transform (CT)

For the analysis oflata contaimg anisotropic features, wavelets are no longer optimhls has motivated the
development of new mulicaledecompositions such as thervelet transfornfCandés and Donoho 2002; Starck et
al. 2002; Candes 20Q@)he firstgeneration CTStarck et al. 2002)sed a seried steps involving the ridgelet analysis
and the radon transform of an image. The algoritlasibeemupdated and the use of ridgelet was discarded to reduce
redundancy anagomputational expensgCandes 2006)CT is considered as a multi scale and mditectional

transform with elements indexed by position, scale and direction parametietbe shape of tight frames-localized



in the spatial ath frequency domainsAlthough the CT presents similar localization properties (in the spatial and
frequency domais) compared to the Wt is associated withigher degrees of directionality and anisotropince

one step of the ridgelalgorithm is based on the WT and as the redundancy property can be of interest for denoising
purposs, the second generati@T (Candes 2008)asnot the best choice for our comparison study. We consequently
decided to use the first generation disci€le(Starck et al. 2002bhased on aimplementation of the 3D Discrete
Analytical Ridgelet Transform (3D DARTJHelbert et al. 2006)This 3D implementatiorallows an exact
reconstruction in the same way as for the .\Whe idea of the discreteT is to decompas the image into a set of
wavelet bands and to analyze each band by a local ridgelet transform with a different block size for each scale leve
Figure 2 illustrateshe edgeGHFRPSRVLWLRQ YLD @IKH ILUVW JHQHUDWLRQTYV

Bandpass filtering Spatial partitioning
B
A A\ |
L5 > \
\\ ]

Figure 2: Decompositions of an edge \tizefirst generatiorCT

The discreteCT of a continuous functionf (X , X,) makes use of a dyadic sequence of scales and a bank of filters
(Pf, " f,",f,..).
with ' |, uf @)
() 1Q(2* /) ®)
and 120 RO RQ 9)

with Athe scaling function.

The decomposition cahenbe summed up by the following stephich are also illustrated in figure 3
1) Subband decompositioaf an object f:
f (P, f, ", f,..) (10)
2) Smooth Partitioning: each sitand is smoothly windoweidto a set ofdyadicsquaresé,

S SR C'YALEE & YN (11)

2



3) Local Ridgelet Analysis: each window is analyzed via the 3D local D&ded@&the Appendik.

Detail bands
s

v eerete ideelet Tranefor
y - - Discrete Ridgelet Transform
7T 7T

a4
v

/ L/
y a4 /
/

Z

A Ayays

/ /

WT2D 77
1

Ay

AL e -
S

Smooth band

/ Frequency

Figure 3: Flowchart for the algorithm used to obtairsf generatiorCT
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2.4 Curveletbased denoising @)

As describd in theprevious paragraph, tH&T procesds based on WT. During the local ridgelet analysis stegh
line in the ridgelet transform image correspetudlD wavelet coefficientsbtained from the Radon transforifhese
coefficients can consequently be procedsethe same WD proceéSendur and Selesnick 206G the oa previously
describedor 3D images in thevaveletbased denoisin(ee figure 3)Similarly to the 3D analysis, a comparison using

different window sizes (3, 5, 7, 11 and 13) was performed.
2.5 Combined denoising scheme

As previously explainedWT and CT exhibit different behavics. Wavelets do noperfectly restore anisotropic
structures (such as edges)esmdmascurvelets do notorrectly handlesmall isotropicelements. Thes&ansforms
thereforeexhibit complementary propertiemdmayconsequently beombinedwithin an improved denoising strategy.
The proposelVCD methodologyillustrated n figure4, consistdn improving thecurrent statef-the-art WD method

by analyzingts residual image (R) by C'he residual Rontaindoththe noise and the structures (mainly anisotropic
such as edges) lost during the WD procé&sgse structuresan consequently be picked up from R via CD based on

the edje-preserving property of the CT, atiteninsertedback intotheinitial noisyimage pocessed by WD



Again, the optimal neighboring window size was assessed by comparing the different values (3, 5, 7, 1TThad 13).
combined WCD methodology was implemented using the C++ language on a Pentium 4, single processor, 2G|
memory PC. Bnoisingof a 128128x128 volune requires less than 5 minutes and this time could be easily reduced

by parallel computing.

‘ p Initialimage |

Noise estimation
& wavelet denoising

Generate the
residual image

R=1-1

W

Edge recovering via
curvelet denoising

v
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Generate the
final image
v
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Figure 4: Combined WaveleCurvelet denoising (WCD) method flow chart

2.6 Evaluationstudy

We chose to build a clinicalselevant dataset of images to compare the three approaglwesmsideringsimulated

and clinical PET images in the neurology and oncology domaiabtained with different PET scanners and
reconstruction processell our redistic simulationsbased on our previous warilamare et al. 2006; Le Maitre et

al. 2009) were consistent in tesof parameters of acquisition and reconstruction compared to true clinical PET
acquisitionsFor all datasets, the three denoising schemes (WD, CD and the proposed WCD) were compared in term
of SNR improvements as well as contrast loss and intensityshiftsanore details, s&&6.3 quantitative analysis

For one of the datasets, the results obtained with WD, CD and WCD were in addition compaae@auiisian filter

All datasets are illustrated in figure 5 and described in the following sections.

2.6.1Simulated datasets

2.6.1.1 Uniform cylinder

The performance of the WCD was first evaluated usingadistic simulation of &% filled homogeneouguniform



activity concentration of 1Bg/mmylindrical phantom(radius 120mmlength 180mm) Although this phantom is
extremely simple, iallows the use of a method dedicated to noise estimdtiodge et al. 2010jmore details in
section 2.6.3) The aquisition with a Philips Gemini PET scanner was sitedausing the Monte Caroased
simulator Geant4 Application for Tomography Emission (GAal)wing the modeling of all relevant physical effects
of areal PET acquisition(positron annihilation, photoelectric effeahd Compton scatteripngLamare et al. 2006 A
total of respectively 5, 10, 15, 20 and 25 million coincidences were generated. Images were recbnstngtbe
OnePsass Listmode Expectation Maximizati@@PL-EM) algorithm(Reader et al. 2002)nd corrected for attenuation
Thefinal reconstructeémages(illustratedin figure 53) consistedf volumes 0fl41x141x45 voxelsof 4x4x4 mm.

2.6.1.2 IEC phantom

A second dataset consistefdsimulationsof the IEC phantonfJordan 199Q)an homogeneous cylinder similar to the
previous phantom buontaining six spheresf different diameters (10, 13, 17, 22, 28 and 37mm) and filled #fth
Acquisitions with the Philips Allegro PET scanner were simulated USAGE. A total of respectively 20, 40 and 60
millions coincidences were generated considering spiwecglinder ativity concentration ratios of 4:1 and 8:1.
Images were reconstited using the OREM algorithm(7 iterations, 1 subset) and corrected for attenuatith no
postfiltering, allowing the comparison with the standard clinical Gaussian filter, whicapgdied using a 3D FWHM

of 5mm. Two differentsizes of the voxel grid (64x64x64 and 128x128x1#8je in addition consideredn the
reconstructiorleading tovoxelsof 4x4x4and2x2x2 mni. Twelve different configurations were therefore analyzed.

Figure Shillustrates this dataset for the case 8:1, 4x4x4® million coincidences.

2.6.1.3 Brain phantom
The last simulateddataset was an image generated using a segmented baaitoq based on measured T1 MRI

images(Zubal et al. 1994)A functionalstaticECAT HR+F-FDG PET imagevasgeneratedising the procedure

fully described previouslyTsoumpas et al. 2008; Le Pogam et al. 20Clipically measured plasma time activity
curves (TACs) were used to generate a set of TACs for each segmented anatomicaifrdggonrain phantom
according to 28 different clinical dynamic frames (1x30s, 1x15s, 1x5s, 4x10s, 4x30s, 4x60s, 4x120s, 9x300s)
Pathdogical parameters weadsointroducedn the parietal and the anterior frontal lobes. Projection data of the ECAT
HR+ scanner were then generated from these dynamic images, and cdoreatteduationnormalization scatter and
randons. Poissomoisewasfinally added to theisograms. inages werasubsequentlyeconstructed by filtered back
projection(FBP)and the static PET imagesobtained by summing the lask temporal frames. Thsmulatedstatic

brain PET acquisition and it®rrespoding groundtruth are illustrated in figurgc.

2.6.2.Clinical datasets
The algorithns werealso appliedo two differentses of lung cancer patientghole-body'®F-FDG PET/CT images

(10in eachdataset)
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2.6.2.1 Large voxels and post reconstructamoothing
Thefirst datasetimageswereacquredona GE Discovery STE-4dlice PET/CT, 55 min after injection of 355 MBq of

FDG, with 3 min per bed position. PET images weoerected for attenuation using CT aretonstructed using
4.68x4.68x3.27 miwvoxels (128x128 matrjxwith the OSEM algorithnusing standard clinical protocparameters

(2 iterations, 28 subsetsinda post reconstructioBaussian filtewith a 5mm FWHM resulting in rather smoothed
images One example of the first datasetligsstrated in figure 5d.

2.6.2.2 Small voxels and no post reconstrucsimmoothing
Acquisitions were performeah a GE Discovery LS PET/CT scanner, 60 min after injection of 350 MBq of FDG, with

3 min per bed position. PET images were reconstructed Ls96g1.9%4.25 mni voxels (256x256 matr)xwith the
OSEM algorithm,using standard clinical protocphrameters (2 iterations, 28 subsets) with ab@3ed attenuation
correction and no podiltering. These imagebad a differentf VD O W D Qdasp&th8ddhtairied a higher level of

noise compared to tHigst datasetOne example is illustrated in figure 5e.

lungs

mediastinum (Cl) tumor (e)

Figure 5: lllustration of the various datasets used in this study: uniform simulated cylinder (20 million coincidences) (a
phantom simulation (4x4x4m#n 60 millions coincidences, 8:1 ratio) (b), brain phantom with ground truth (up) and simula
image below (c), first clinical dataset (d), second clinical dataset (e).

2.6.3Quantitative analysis

For the first simulated datasatthe uniformly filled cylindei(figure 5a), we used aechnique folSNRmeasurements
and only possible with a uniform phantom acquisitjbodge et al. 2010)In this approachnoiseis measuredy
determining the ifference between correspondimgxelsin two acquisitions with the same conditions and by
calculating thesD of these difference This corresponds to a noise analysis with multiple realizationssssssumed

that each pair of slicesonsists oindependenhoiseobservatios (Lodge et al. 2010)For one single simulatiowe
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thereforeobtairedn multiple realizationsvhere n is the number of slices.

For all other datasets, manually drawn regions of int@R€3t) were placed over identified structureptierestumors)

and within large homogeneous regions (such as the lungs or the liver for the clinical images). Quantitative measureme
of SNR was extracted from these ROIs on the images using respectivelyCl¥[and the proposed WCD
methodologiegand Gaussian filtering in the case of the simulated IEC phanidra)SNR was defined according to
equation 12) (Webb 2003)

SNR: 20loglo(% )dB (12)

with m; and Y \WKH PHD Q DQG 6' RI WK Hhivi BWgHROIY, £val@asd-hefare did. &fter thd denoising
step.
To evaluate the potential loss of resolution induced by the denoising and the preservation of the information regardin
structures of interest, we used line profiles through various regioaddition, the mean contrast along these intensity
profiles across tissue boundaries (chosen as going from one uniform area outside the chosen ROI to another one ins
the ROI) was also calculated in order to assess the amount of smoothness introdheedEhgising step using the
following formula:

Contrast 10% uL:l X1 0% (13)

ib %1t X%

where, xand x+1 are the values of two adjacent pixels along the slope of the profile and L is the length of the slope
L was different in each case and was manuztigcked to avoid including regions on each side of the slope in the

calculation

As an optimal denoising approach is expected to reduce thelisereasing SNRwithout howeverintroducing
significant changes to the mean vali¢hin organs or tumarof interestwe finally measured the percentage of mean
intensity biag%) in different ROIs placed inside tlspheredésions and large homogeneous afsach as the lungs
and the liveffor instancg, defined as:

Mean ROI(lw) Mean_ROI(I)

woo (14)
Mean_ROI(I)

Intensity_bias=

Where Mean_ROI(Ilw)is the mean uptake value measured in the ROlil@mmed image andMean_ROI(l)is the
corresponding mean uptake measured in the ROI reported on the original noisy image.
Significance of the difference between the various configurations andstenmethods was assessed using Kruskal

Wallis tests, a noparametric test appropriate for small, non Gaussian distributed samples.



3.1 Simulated images

3. RESULTS

3.1.1 Choice of the neighboring window size

According to the results obtained using different window sizes in WD, CD and WCD applied to the IEC phantom
dataset, although this choice had less important impact on WCD than on WD and CD, the optimal size was found
be 5x5x5, with neither improvemenbmdecrease operformancewith larger windows, as shown in figure 6 on 4
spheres of the IEC phantom chosen for illustration. Therefore the entire analysis from here onwards will be presente
with results using a window size of 5.
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Figure 6: Comparison bprofiles obtained on 4 different spheres of the IEC phantom consideri@glifferent denoising
schemes, and the 5 different sizes for the neighboring window, with respect to the original noisy image profile (blue).

3.12 Homogeneous cylindricghantom

Results for the cylindrical phantom are illustrated in figraad8 (for the 20 million coincidencesasexandprovided

fully in tables | and Il for different count statistics. Qualitative results are presented in Tignefere and after

denosing by the three approaches with the respective residual images. It can be visually noticed that the edges of tt

cylinder are better preserved with CD and WCD compared to theWi€h resulted in more blurred edg@sofiles

going through the edges oktleylinder are illustrated in figur8.
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Figure 7: Cylindrical phantom illustratio®0 million coincidenceshefore(a) and after(b-d) denoising by the three approacl
WD (b), CD(c) and WCD(d), along with their associated residual imageg)(e
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Figure 8: Profile plot for the cylindrical phantom simulated dataset (20 millions coincidences case).
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Numberof .o 5oM  15M  10M  5M
coincidences

WD 185 156 221 128 125
CD 4.6 2.7 5.4 21 29
WCD 0.8 0.3 3.2 0.6 1.1

Table 1: Meanlocal contrast decrea@o)

WCD led to significantly lower mean local contrast decreases with 1.2+1.1% vs. 3.4+1.4% for CD and 16.3+4.1% for

WD (p=0.004)(table 1) No significant differences were found with respect to the number of coincidgr€es)(

Numberof o0 5oM  15M  10M  5M
coincidences

WD 446.1 426.4 397.0 402.7 343.0
CD 223.2 212.4 198.7 197.8 174.0
WCD 218.1 208.2 195.0 195.2 170.2

Table 2: SNR increas¢%o)

Significantly higher SNR increasesross the five configurations (5M to 25M coincidenses)e obtained with the
WD method (heantSD 0f403+39%) vs. CD and WCDp€0.008) (table 2) CD and WCD still led tdarge
improvementsvith ameartSDof 201+18% andf 197+18%respectivelythat were nosignificantly different $>0.5).

Again, no significant differencewere found with respect to the number of coincidences.

Regarding the intensity within a large homogeneous region in the cylinder, the mean intensity bias (mean+SC
calculated across thatire range of configurations) was negligible for the three approaches with less than 0.15+0.1%,
0.05£0.02% and 0.01+0.03% for WD, CD and WCD respectively although statistically speaking WDwesilts
significantly higher thai€D and WCD <0.04).

3.13 IEC phantom

Results for the IEC phantom simulation are illustrated in fi@uir the same configuration as in figure. 34CD led

to almost no loss of resolution and structures, contrary to WD and CD approaches, as it can be noticed from the residu
images and as the profiles plotted at the boundaries of all six spheres shown idGidgusrate. The worst results

were obtained with Gaussian filtering.

These results provide an estimation of the lodeadl contrast induced by the differedénoising processem the

objects of interesfThe Gaussian filteled to an important loss of contrast for all spheres, especially for 28mm and
below. The wavelet approach led to a loss of intensity and contours blurring for the three biggest sph28an@7

22 mm) but not for the smallest ones (10, 13 and 17 mm). On the contrary, the curvelet approach led to a loss ¢
intensity and contours blurring for the 10 and 13 mm spheres but not for larger spimalgg.the profilesdrawn on

all the sphergin the WCD imagevere found to be almost exactly the same¢hasonedrawn onthe original noisy

image.
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Figure 9: IEC phantom case with 4x4x4mip60 millions coincidences and 8:1 ratio, (a) before ane)) @fter denoisingy (b)
WD, (c) CD and (d) WCD and (e) Gaussian filter, along with their corresponding residual imgges (f

Figure 10: Profiles plots on all six spheres for tt&C phantom simulated dataset case withx4mn¥, 60 millions coincidences,
8:1 ratio.
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Sphere 10mm 13mm 17mm 22mm 28mm 37mm
WD 11.1+8.2 145+14.0 10.2+85 16.9+10.2 14.6+83 129+11.1
CD 13.3+13.6 17.3+42 7.0+50 8.0+49 54+10.0 7.0+11.0

WCD 0.2+6.7 93+94 3.7+46 5.0+9.7 53+94 7.2+10.0

Gaussian 63.3+85 55.8+6.3 42.1+73 37.8+39 17.1+35 15.2+47

Table 3: Mean £ SD contrast decrease (%) calculated acrodtt@enfigurations at the boundaries of the spheres

The mean contrast at the boundaries was calculated frggnafilesillustrated in figurel0. WCD led to a significantly

lower mean local contrast decrease across the entire range of configurations and spheres of 1.0+5.5%t@ompared
7.7£8.6%, 5.8+7.4% ar@B.6:5.7%for WD, CD and Gaussigp=0.01)(table 3) These results further confirmed that
contour blurring was slightly higher for the largest ROIs using WD, and for the smallest ROIs using CD, although this

trend was not significant (p=0.7).

ROI 10mm 13mm 17mm 22mm 28mm 37mm Cylinder
WD 106+76 21636 13.3+23 139+57 153+8.1 135+0.2 31.4+0.3
CD 287+39 186+06 122+14 125%+34 168+79 164+0.6 24.2+0.8
WCD 87+7.4 164+31 100+16 122+36 171+7.8 16706 223%0.7
Gaussian 29.1+47 225+28 13.6+43 141+43 154+6.7 152+0.3 34.2+05

Table 4: Meant SD SNR increase (%) across ttizconfigurations

In terms of SNR percentage increase, all the methodologies increased SNR with no significant difference between th
three approaches nor with respect to the size of the sppef®4), except using Gaussian filter for the two smallest
spheres (table 4). @D, CD, WD and Gaussian led to +22.3+£0.7%, +24.2+0.8%, +31.3+0.3%34r#t3-50 SNR

increasaespectively.

ROI 10mm 13mm 17mm 22mm 28mm 37mm Cylinder
WD -09+13 -15+14 -10+08 -18%+15 -40+36 -82+70 -7.1%+38
CD -3.1+50 -79+22 -69+34 -41+16 -47+x24 -50%x33 -64%40
WCD 03+04 12+15 04+02 0101 0405 09%+34 17%x13
Gaussian -61.9+5.3 -53.2+4.1 41.8+5.7 -405+3.6 -142+3.8 -11.7+49 -83x21

Table 5: Mean£SD mean intensity bias (%) across f2configurations

Regarding intensity biasn the one hand, the lowest changes were observed for WCD with a maximum mean intensity
bias of +1.7+1.3% for the background R@hereas the averader WCD acrossl2 configurations andill ROIs was
+0.7+0.6%(table 5) On the other hand, significantly higher biases were associated with WD and CD approaches
(p=0.0008), with up t68.2+7.0% for the sphere of 37mm with WD, aid®+2.2% for the sphere of 13mm with CD.

The Gaussian filter was associated witte largesintensity biases systematically and significantly higher than most

other denoising schemes for all spheres, especially for the 4 smallest ones (mean intensity biad@sdr66%6).
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3.1.3Brain simulationphantom

Results for the brain simulation dataset are illustrated in figlireQualitative evaluation was carried out from the
residualimages and using profiles through different RQébles 67). WD led to a significant loss of resolution
compared to th two other methodologies, as demonstrated by the profiles (figubdatk arrows) showing a loss of

intensity and contrast introduced by all three denoising approaches. However, CD and WCD led to a lower impact.

Figure 11: Brain simulation PET image (a) and corresponding grodndh (b). Results after denoising with W), CD(d) ant
WCD (e), along their respective residual imageb)(f
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Figure 12: Profile plot on the simulated brain phantom acquisition

ROI WD CD WCD
Cerebellum -1.6 0.5 0.5
Putamen -0.9 1.4 15
Lat Front Gyrus -2.5 24 2.3
Amygdale 2.4 2.2 2.0
Hippocampus -11.6 -4.0 -2.4
Caudate -14.1 -2.5 -0.4
Thalamus -21.9 -15.0 -14.0
Sup Occ Gyrus -15.2 -4.8 2.7
Med Front Gyrus -22.2 -14.7  -134
Sup Front Gyrus -24.2 -14.8 -12.9

Table 6: mean local contrast decrease (%)

This qualitative evaluation was confirmed by the measurements of the contrast at the boundaries of ten differen
structures such as for example the putamen, the amygdale or the frontélaiyeu§) The loss of resolution measured

by the mean localontrast decrease calculated across all these profiles was of 12.6£6.7%, 17.5+16.2% and 38.3+27.99
for WCD, CD and WD respectively. WD and CD methods also led to a slightly higher intensity bias compared to the
noisy image for all the ROIs with a mean d&ge of respectivebl1.7+9.3% ané4.9+7.3% compared t8.9+6.7%

for WCD. This trend was however not significapt0.08), except for the 6 last ROIs (from hippocampal to the Sup
Front Gyrus) for which WCD and CD led to a significantly lower bias th&n(@#0.02).
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ROI WD CD WCD
Cerebellum 20.3 15.1 14.2
Putamen 39.2 15.7 154
Lat Front Gyrus 23.0 13.2 11.8
Amygdale 29.9 17.0 17.3
Hippocampus 236 113 9.7
Caudate 12.1 7.2 5.8
Thalamus 41.6 19.6 18.4

Sup Occ Gyrus 15.3 8.4 7.1
Med Front Gyrus 14.8 5.7 2.8
Sup Front Gyrus 15.2 7.9 6.5

Table 7: SNR increase (%)

WD led to significantly higher SNR increasgs=0.006) over all the ROIs (tabl® of +23.5£10.4%, compared to
+12.1+4.7% and +10.9+5.3% for CD and WCD (no significant differerespectively

3.2 Clinical images

3.2.1First dataset (large voxels, post reconstruction smoothing)

Qualitatively, theimages of thdirst dataset were efficiently denoised whatever method was used (seelffjure
although the plot profile (figure4} goingthrough the whole body and an identified tumor illustrates the fact that WD

led to a loss of intensity and contrast (with a blurring of the organs edges), contrary to the results of the CD and WCI
methodologies.

As it can be seen dhe residual images @ifjure 13, WD led to a visible general los$ resolution more pronounced

at the edges, whereas the tumor region appeared unmodified in comparison. CD induced a lower loss of details at tl
edges and for all the anisotropic structures within the image, although it introduced a visible change in and around th
tumor, which can be considered as a gisgiropic structure due to its size. On the other hand, the WCD approach

was associated with the minimwhangesn both tumor and organ edges

Figure 13: One of the first clinical dataset PET image (a) betord (bd) after denoising with (b) WD, (c) CD and (d) W(
along with their associated residual imageg)e
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Figure 14: Profile plot on the whole body PET image from first clinical dataset illustrated in figure

ROI WD CD WCD
Tumor 7.1+ 346 -02+04 1.3€’+0.1
Lung -4.26’+-0.1 -0.3+1.0 4.2e’+0.1
Mediastinum  -0.2 £-0.2 12+25 02+x04
Liver -7.1+-7.7 -52+21 09+0.5

Table 8: Mean +SDintensity bias (%) for clinical dataset 1

ROI WD CD WCD
Tumor 41+1.1 7426 26+22
Lung 5.7+52 2014 20x0.6
Mediastinum 7.8+23 49+14 36+10
Liver 10.7 + 3.7 47+08 35+13

Table 9: Mean £SD contrast decrease (%) for clinical dataset 1

This was further confirmed by the meatensity biast@ble § and by the local contrast decreasble 9 obtained by

the different approaches in the tumor, lungs, mediastinum and liver. WCD better preserved |boti toatrast and
intensity of the noisy image with a maximum local cositidecrease of 3.6%able 9)and a maximum intensity bias

of 0.9%(table 8) contrary to WD and CD that led to 10.7% and 7.4% local contrast loss and 7.1% and 5.1% intensity
bias for WD and CD respectively. This trend of lower bias associated with WCBomeever not significant, except

for the liver for which WCD led to a significantly lower bigs0.002). On the other hand, contrast decreases associated
with WCD were significantly lower than for WD and Cp<Q.05)(table 9)
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ROI WD CD WCD
Tumor 82+53 11.2+76 3.2%+1.9
Lung 16.4+66 82+39 59+28
Mediastinum 13.6+7.8 7.3+3.9 5.2+3.0
Liver 13.7+57 6.2+3.0 44+23

Table 10: Mean +SDSNR increase (%) fazlinical dataset 1

Significantly higher SNRmprovements in large hamgeneous regions (lung, liver) (taldl@) were obtained with WD
over CD and WCDp=0.01). The highest mean SNR increase (+16.4+£6.6%) was obtained for the lungs with WD and
the lowest (+3.2+1.9%) for the tumor with WCD.

3.22 Secon dataset $mallvoxels,no post reconstruction smoothing)

Qualitatively, the images of the second clinical dataset were also efficiently denoised whatever method used (figure
15). The plot profile(figure 16) going through the whole body and an idendiflesion, howeverillustrates the fact

that WD led to a higher loss of intensity and contrast (with a blurring of the organs edges), compared to the result
obtained with the CD and WCD methodologiéscording tothe residual imagefigure 15), WD ledto a visible

general los®f resolution more pronounced in the area of the lesion exhibiting a complex anisotropic shape. In this
illustrated caseCD induced a lower loss of details both at the edges and for the tumor structure; and the WCD approact
wasassociated with the minimum modification of bawimor and overall organ edges.

Figure 15: PET imageof figure 5ebefore(a) and after denoising with'D (b), CD (c) andWCD (d), with their associated residi
images (eg).
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Figure 16: Profile plot on the whole body PET image from second clinical dataset illustrated inSigure

ROI WD CD WCD
Tumor -75+42 -19+13 -16+09
Lung -21+18 -02+0.9 -49e°+0.2
Mediastinum -1.9+0.7 -02+1.1 -47e¢°+0.3
Liver -1.6+£0.8 -03+1.7 -0.1+0.2

Table 11: MeanxSD intensity bias (%) for clinical dataset

This was further confirmed by the mean intensity biabklé 1) obtained by the different approaches. CD and WCD
better preserved the intensity of tiuenorwith a significantly lower bias of respectively.9% and1.6%, compared
to-7.5 for the WD <0.05).Bias was also significantly lower for WCD and CD vs. WD for the other ROIs (table 11).

ROI WD CD WCD
Tumor 112+44 57+23 4326
Lung 76+6.1 32+x24 31%15
Mediastinum 8.2+24 41+11 3617
Liver 84+45 38+19 3.7x17

Table 12: Mean +SD contrast decrease (%) for clinical datase

WCD also better preserved the local contigdsthe tumorwith a significantlylower maximum decrease of 4.3%
compared to 11.2% and 5.7% for the WD and CD respectipe®§).02) (tablel?). Difference with WD was also

significant for the other ROls.
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ROI WD CD WCD
Tumor -1.2+ 4.7 44+58 3.6+3.9
Lung 16.0x54 125+64 13.0+6.8
Mediastinum 22.3+6.4 16.4+57 16.7+7.1
Liver 294+49 204+6.9 199%+7.8

Table 13:Mean+=SD SNR increase (%9r clinical dataset 2

Contrary to the first clinical dataset, SNR improvements were not significantly different between the three denoising

approachespE0.8) and absolute values wetlsohigher with respedb the first clinical datasetgble13).

4. DISCUSSION

In this paper weomparedhree different denoising approaches, based on wavelets, curvelets and a combination of
both. The aim of this work was to develop a denoising method dedicated to PET images that would provide efficient
denoising while preservingsanuch as possible the original quantitative and structural (such as shapes and spatial
features) information of structures of interest in the image. This is especially impgmyrtaonisidering denoising as a

first preprocessing step occurring before atimage processing and analysis steps, such as partial volume effects
correction, segmentation, angtake heterogeneisharacterizationvhich is an important trend in tHRET imaging

community today, especially for therapy response stifdiesa et al. 2011)

The results we obtained on the simulated IEC phantom by applpiogtreconstruction Gaussian filter with a FWHM

of 5mm, corresponding to clinical systems standard, demonstrated the major intensityahthsamtrast loss
associated with this approach. Contrary to the Gaussian fileedenoising in the wavelet domain is considered as a
stateof-the-art techniqudor PET imaging It allows modifying voxel values at different levels of resolution, making
possiblein most instancethe distinction between contrast at boundaries and noise. However, it suffers from some
limitations due to its non optimal processing of edge discontinuities. A newsuoald geometric approach, the CT,
allows extending the walet properties to account for directional properties in the image, such as edges. However,
WT stays optimal for isotropic structures. In order to address the issue of resolution loss and mean intensity bia
(observed in the presented results) associatddsuch standard denoising, we consequently considered a strategy
combining WT and CT.

The initial noisy image is first denoised by a wavelet approach. Different wavelet transform and wavelet denoising
techniques can be used at this step, such as, for instance, the standard SureShrink(Bgpaactand Johnstone
1995)purposely devised for PETurkheimer et al. 1999We however decided to use a more recent wavelet denoising
algorithm, namely the local adaptative BiShrink fil(&endur and Selesnick 200t outperforms the SureShrink
approach as it takes into account the statistical relationships between wavé@éntse Once the initial noisy image

is processed, the discarded edges information are then extracted from the residual image via a local approach of t
multi scale curvelet analysfStarck et al. 2002)The final image is then a combination of the wavelet denoisinyf resu

and the edges informatioacovered througthe curvelet analysis.
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The respective advantages/drawbacks of WD and CD were well illustrated when applied to the simulated IEC phantor
dataset containing homogeneous spheres of varying diameters. Wheneagingnts weraigherfor WD over CD
regardinghe two smallestpheres that can be considered as isotropic structures, CD led to better performances on the
largest spheres. Our proposed scheme ledeoall better performances than CD or WD alaemonsrating it dd

manage tdenefit from the best of both approaches.

On the one handhé results we obtainexverallon bothsimulated and clinical datasets, representative of whatean
obtained with current state-the-art PET scannersuggest that Wenerates the highest SNR increases, although

for some cases the differences are not signific@ntthe other handhe mean intensity bias and loss of contrast
associated with WD might compromise the quantitative accuracy of the resulting denoised Fnagea clinical and
guantitative point of view, the optimal denoising method should be the one that best preserves the original structura
geometric and quantitative information, whégll improving SNR This is especially true in the current contekt
exploiting further the information contained in PET images beyond the standargh,3iy\considering automated
characterization method such as spatial features anélysier et al. 2012) The proposed methodology combining

WD and CD techniques corresponds to that requirement by exploiting both individual transforms. It provided
satisfactory results iterms of SNR increasen all datasetdt was also associated with more limited resolution loss
than the two other techniques, although the magnitude of improvement was dependent on the considered dataset ¢

not significant for all the tested images.

The first comment regarding our methodology concerns the lower SNR results for WCD compared to WD or CD only.
This difference can be primarily explained because of the preservation of the mean intensity values associated with tt
proposed approach relative the WD and CD methods, with a direct impact on the ratio in equB2iorhe general
performances of the denoising approaches were also different betwenidlhis datasets. Up to more than 200% of
SNR increase was obtained for the homogeneous cylindiereas less striking increases were obtained for the IEC
simulated phantom (around 10 to 30%), and even less important values for the brain simulated phantom and the clinic
images (with SNR gain from 3% up to 30% depending on the acquisition andtraction parameters). This can first

be explaned by thalifferences in th@nage reconstructioprocesslit was performed without pofittering in the case

of the simulated datasets, similarly to the second clinical dataset for which the highest S&\Wegaiobtained, and
contrary to the first clinical dataset generated using aneosnstruction Gaussian filter with a FWHM of 5mm, for
which the gain was much lower. This can be directly related to the results observed using Gaussian filter on the 1EC
simulated phantom that led to images wittiprovedSNRs but also major loss of structures and contrast, as well as
intensity biases. This further stresghe potential benefifrom applyingdenoising techniques such as the ones
proposed in the presewbrk on clinical images reconstructed without postonstructiorsmoothing The results we
obtained on the clinical datasets with incorporated-pasinstruction filtering demonstrated that since the images had
already beersmoothed an additional denoisingid not improve the SNR much further. A second element of

explanation is the complexity and sizes of structures. In the homogeneous cylinder for which SNR gains of more thal
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200% were obtained, there was no structure and only an homogeneous backgratimis, tie most simple case. In

the simulated IEC phantom (for which SNR gains eB00%6 were obtained), the structures are very simple, consisting

of an homogeneous background with simple sphe@taining homogeneous uptake. This is obviously a
simplification of real clinical images that contain a mbecbaderrange of shapes, sizes, and uptake heterogeneities.
The range of SNR improvement values obtained on the brain phantom datassattualhgmuch closer to the results
obtained on the clinical datets which strengthens this argument. A third and final element théhmoise estimation
(equation 3) as the proposed WCD approach is directly dependent on the performance of the first step (WD). If thic
approach led to good results on phantom consigexistationary noise and a local area (cylinder, brain), for whole
body PET images, the noise estimation may be less robust due to the non stationary nature of the noise within the fie
of view. The noise estimation from the variance measurement atghsutband of the WT may be non optimal and
underestimate the variance in other-balnds. This represents a limitation not only for our approach but also for all
WD or CD techniques previously published and should be considered in future studiesdeeirii@ general
performance of PET denoising processes.

$ VHFRQG FRPPHQW FRQFHUQV WKH FKRLFH RI DSSO\LQJ :" DQG &' VH~
performing CD before WD in the WCD process would theoretically lead to differentsddolivever, the aim of this

study was to propose an improved wavdlased denoising (WD being considered as the currentadttie-art

method) by analyzing its residual image and recovering the structures lost during the initial denoising process
Furthermore, starting with CD would lead to a residual image containing noise and lost isotropic structures which may
be harder to detect within the noisy residual image than anisotropic elements. We therefore chose to perform WI
before CDFrom a theoreticalgint of view, most of the relevant edge information retained in the residual image after
WD should be extracted by CD, even when these edges are lost amidst amplifi¢8taoiseet al. 2002However,

such an approach may still be suboptimal compared to a parallel amdlifsisinitial noisy image via WD and CD
performed simultaneously and subsequently comb{Béatck 2001)A full comparison with such an approach will
however require a different implementation and a thorough comparison on theagasstsi which is out of the scope

of the present study and will be considered for future work.

Although we investigated the performance of the method on a large spectrum of both simulated and clinical dataset:
only a limited number of reconstruction aighms and types of images could be considered in this first work. Future
studies will consequently further validate the ability of our straightforward PET denoising method to achieve similar
performance orPET images obtained using different reconstauttalgorithms and scannerSor instance, the
comparison between pestconstruction denoising (such as the scheme proposed herémpraled image
reconstruction algorithmsuch as the incorporation of additional regularization (for example anatomicatisng

priors) or FBP with Hann filter, will be investigated in future studidmproved noise estimation and alternative

strategies combining WD and b a parallel waywill also be investigated.
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5. CONCLUSION

In this paper, alenoising methodology for HEwas presented, overcoming limitations encountered in the wavelet
approaches currently considered as the stiathe-art denoising filters for PET imaging. Our approach is based on the
combination of a wavelet transform and a new multi resolution tegbnitamely the curvelet transform. These are
combined in a nevsequentiaffiltering scheme.On all simulated and clinical datasets considerbd, dombined
approach provided the best compromise betveagral to noise ratio increaaad preservation of botmean intensity

and local contrastndependently of the sizesd shapesf the regions of interest. This new PET denoising approach
does not require other imaging modality or complex parameter estimation to perform efficient denoising. Although the
SNRincreases were higher withavelet or curveletonly approaches, these approaches were also associated with
higher bias in the mean activity measured in different ROIs, as well as substantial local contrast and resolution loss
The waveletturvelet denoisig might be a promising tool to replace simple filters such as Gaussian that are currently

offered in statef-the-art clinical PET systems t@rovidesmootledimages.

Acknowledgements:We would like to thank Dr C Tsoumpés providing the simulated braotataset
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Appendix

Theridgelettransformr of a signal is defined by

with

The ridgelet coefficierstare defined in the Radon domain as following

The Radortransform of a signal s is defined by:

(15)

(16)
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