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Abstract 17 

The presence of dyes in wastewater effluent of textile industry is well documented. In 18 

contrast, the endocrine disrupting effects of these dyes and wastewater effluent have been 19 

poorly investigated. Herein, we studied twenty-three commercial dyes, usually used in the 20 

textile industry, and extracts of blue jean textile wastewater samples were evaluated for their 21 

agonistic and antagonistic estrogen activity. Total estrogenic and anti-estrogenic activities 22 

were measured using the Yeast Estrogen Screen bioassay (YES) that evaluates estrogen 23 

receptor binding-dependent transcriptional and translational activities. The estrogenic 24 

potencies of the dyes and wastewater samples were evaluated by dose-response curves and 25 

compared to the dose-response curve of 17β-estradiol (E2), the reference compound. The 26 

dose-dependent anti-estrogenic activities of the dyes and wastewater samples were 27 

normalized to the known antagonistic effect of 4-hydroxytamoxifen (4-OHT) on the induction 28 

of the lac Z reporter gene by E2. About half azo textile dyes have anti-estrogenic activity with 29 

the most active being Blue HFRL. Most azo dyes however have no or weak estrogenic 30 

activity. E2/dye or E2/waste water ER competitive binding assays show activity of Blue 31 
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HFRL, benzopurpurine 4B, Everzol Navy Blue FBN, direct red 89 BNL 200% and waste 32 

water samples indicating a mechanism of action common to E2. Our results indicate that 33 

several textile dyes are potential endocrine disrupting agents. The presence of some of these 34 

dyes in textile industry wastewater may thus impact the aquatic ecosystem.  35 

 36 

Keywords: textile dyes, estrogenic activity, anti-estrogenic activity, industrial textile effluent. 37 

 38 

1. Introduction 39 

 40 

Dyes are widely used in most industries such as those manufacturing papers, plastics, food, 41 

cosmetics, textiles or leathers. These dyes are useful to colour the final products. Dyes are 42 

classified depending on their colors, their chemical structures and/or their origin (natural or 43 

synthetic). Natural dyes most frequently originate from plants (such as riboflavin or β-44 

carotene). Determination of the chemical structures of natural dyes and the accomplishment of 45 

their synthesis allow the gradual replacement of these natural dyes by their synthetic 46 

counterparts. Approximately 10.000 commercial dyes are used in the coloring industry. More 47 

than 10% of dyestuff used during the coloring processes does not bind to the fibers and 48 

therefore these excess dyes are released into the environment producing serious 49 

environmental pollution (Pearce et al., 2003; Rajeswari et al., 2011). The presence of these 50 

dyes in wastewater and subsequently in water resources, even at very low concentrations, is 51 

easy to observe visually as the result of textile industry activities. They may increase effluent 52 

toxicity and lead to environmental damage (Robinson et al., 2002). In addition, many 53 

synthetic dyes are poorly biodegradable. In some dyehouse effluents, dye concentration can 54 

reach up to 400 mg/l (O’Neill at al., 1999). A specific study has even demonstrated that these 55 

concentrations can exceed 600 mg/L in Nigeria (Yusuff and Sonibare, 2004). Their presence 56 

in water reduces light penetration and has a negative impact on photosynthesis. Moreover, the 57 

dyeing process itself generally also contributes to the water body contamination by chromium, 58 

zinc and copper which are all toxic to aquatic plants and fish below 1.0 mg/L (Eremektar et 59 

al., 2007; Sharma et al., 2007; Verma, 2008). The research on textile wastewater toxicity, 60 

which has been carried out so far, shows how the action of toxic dyes occurs at different 61 

levels of the food chain, from food supply (i.e. algae and plants) to consumers (i.e. 62 

crustaceans and fishes) (Manu et al., 2003; Robinson et al., 2002; Sharma et al., 2007; Soni et 63 

al., 2006; Tigini et al., 2011). Most research effort has been devoted towards elucidating or 64 
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improving the degradation mechanisms of textile dyes with the hope to reduce their toxicity 65 

levels (Phugare et al., 2011a,b). Environmental regulations in most countries (i.e. EU 66 

directive 91/271) have prioritized in wastewater dye decontamination in order to minimize 67 

environmental damage (Robinson et al., 2001). Although the Environmental Protection 68 

Agency (EPA) has emitted new practice guidelines for environmental management, the 69 

presence of pollution dyes remains a serious environmental issue specifically for small textile 70 

industries in various countries (e.g. China, India, Taiwan) where working conditions and low 71 

economic status does not allow an efficient wastewater treatment before disposal into water 72 

sources (Mathur et al., 2005; Gregory et al., 2007; You et al., 2009). Since the mid nineties, 73 

the links between dyes, environmental impact and cancer emergence have been the subject of 74 

considerable interest both from researchers and from the general public. However, the causal 75 

relationship between dyes and certain types of cancer is difficult to establish. Several studies 76 

have been conducted on the toxicity, mutagenicity and genotoxicity of textile dyes (Bakshi et 77 

al., 2003; Ben Mansour et al., 2007; Dogan et al., 2005; Durnev et al., 1995; Mathur et al., 78 

2007; Schneider et al., 2004). In the case of azo dyes, the increase in bladder cancer 79 

incidence, observed among textile industry workers, has been linked to prolonged exposure to 80 

these dyes. A report of experts from the “Cosmetic Ingredient Review Committee” confirmed 81 

that some anthraquinone dyes, like the disperse Blue 7 dye, used in the cosmetic industry as 82 

hair colorant and in textile, induce genotoxicity in bacteria (Cosmetic ingredient, 2007). Since 83 

then, research on these dyes confirmed their carcinogenic effects for humans and animals 84 

(Tsuda et al., 2001). This toxic effect has been linked to their presence in the environment 85 

(Dogan et al., 2005; Chou et al., 2007; Tigini et al., 2011). From an environmental point of 86 

view, toxicity, genotoxicity and mutagenicity of industrial effluents have been demonstrated 87 

(Alves de Lima et al., 2007; Grinevicius et al., 2009; Tigini et al., 2011). However, these 88 

effects have generally not been linked to the presence of dyes. Chou and collaborators 89 

associated the dioxin-like activity of some dyeing wastewater with the presence of specific 90 

anthraquinone dyes (Chou et al., 2006, 2007). In the same studies, these authors demonstrated 91 

that disperse blue 56 can bind the aryl hydrocarbon receptor (AhR), which is involved in 92 

many physiological functions such as cell regulation and reproduction. Two Brazilian studies 93 

have identified that the mutagenic activity of the Cristais River, a drinking water source of 94 

São Paulo, is caused by the presence of three blue dyes; C.I. Disperse Blue 37 contributing to 95 

55% of this effect (De Aragão et al., 2005).  96 
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Up to now, the estrogenic activity of dyes has seldom been studied. Rare studies 97 

mainly report the effects of food colors, such as tartazine (E102) and erythrosin B (E127). 98 

Both compounds affect chromosome structure and increase Estrogen Receptor (ER) site-99 

specific DNA binding to Estrogen Response Element (ERE) in HTB 133 cells (Roychoudhury 100 

et al., 1989) and in the E-screen test (Datta et al., 2008). The present manuscript investigates 101 

both the estrogenic and anti-estrogen activities of twenty three pure commercial textile dyes 102 

using the Yeast Estrogen Screen (YES). This in vitro assay has been developed for the 103 

detection of endocrine disrupting compounds (EDCs). In order to indentify estrogen and anti-104 

estrogen activity of textile dyes, the YES assay has been used to probe two different modes of 105 

action. First, a reporter gene assay measures the impact of dye binding on ER on its ability to 106 

promote binding-dependent transcriptional and translational activity. Second, an ER 107 

competitive binding assay measures how a dye competes with 17 -estradiol (E2)-dependent 108 

ER activation. In addition, the endocrine activity (estrogenic and anti-estrogenic activity) has 109 

been assessed on a textile effluent coming from a blue jean manufacturing Tunisian industry 110 

in an attempt to correlate the endocrine activity observed for commercial compounds and that 111 

obtained for dyeing wastewater. 112 

 113 

2. Materials and methods 114 

 115 

2.1. Selected dyes 116 

 117 

All the dyes selected (23) in this study are used in the textile industry (Table 1 and 2). 118 

Only, 17 on 23 dyes have a known or communicated structure. The structure of the 6 other 119 

dyes were confidential and not available in the chemical abstracts service. However, the 120 

safety and chemical information certificate of analysis usually indicates the nature of the dye 121 

(azoic or anthraquinone-type chemical structure). For each dye, a stock solution (10 g/L) was 122 

prepared by dissolving in distilled water, followed by filtration through Whatmann No. 5 filter 123 

paper. All these dyes appeared perfectly soluble in water at this concentration as assessed by 124 

the absence of precipitate. For each dye, the endocrine activity was assessed at four 125 

concentrations in the range of 1×10
−5

 g/L to 1 g/L. The natural fluorescence of the dyes and 126 

their interference on the fluorescence emitted by yeast was determined beforehand in order to 127 

avoid spurious signals generated by the YES test in our experimental conditions. The 128 

fluorescence of each dye has been measured in the absence of yeast cells and subtracted from 129 

http://www.omicsonline.org/2155-6199/2155-6199-1-110.php#Table1
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the data obtained for estrogenic tests. The quenching potential of the dyes was also assessed 130 

on the yeast fluorescence emission during the antiestrogenic test as follows. The fluorescence 131 

of yeast cell has been measured after 6 h of incubation of the reference compound E2 (from 132 

Sigma-Aldrich, St Quentin-Fallavier, France). Then, each dye was added to the medium at 133 

various concentrations and the fluorescence quenching was measured immediately. 134 

Compounds inducing more than 10% of fluorescence quenching were not investigated further 135 

for anti-estrogenic activity (noted by an asterisk in Table 2). The cytotoxicity of each dye was 136 

evaluated by measuring yeast growth at an O.D. of 600 nm. 137 

 138 

2.2. Wastewater sampling and extraction 139 

 140 

Wastewater samples (1 L) were collected from the textile effluent of an industrial blue 141 

jeans factory in Tunisia. Raw water samples were centrifuged (2000 g, 15 min) to eliminate 142 

solids in suspension. Supernatants were then extracted by solid-phase extraction as described 143 

by Pillon et al. (2005). Briefly, aqueous samples were concentrated on reverse-phase C18 (5 144 

g, 20 mL) cartridges (Sigma-Aldrich, St Quentin-Fallavier, France) preconditioned with 145 

methanol. Compounds elution from the column was triggered using methanol followed by 146 

hexane. Eluates were dried at 37°C in a rotary evaporator and residues were taken up in 2 mL 147 

methanol (concentration factor: 500). 148 

 149 

2.3. Yeast estrogen screen assay (YES)  150 

 151 

2.3.1. Assay of estrogenic and anti-estrogenic activity 152 

 153 

Both agonist and antagonist activities of chemical dyes were examined using the Yeast 154 

strain BY4741 (Euroscarf, Frankfurt, Germany). This recombinant yeast strain carries the -155 

galactosidase reporter gene under the control of the ERE and contains the human ER cloned 156 

into the constitutive yeast expression vector pAAH5 (García-Reyero et al., 2001). The test 157 

measures -galactosidase activity (fluorescence at 460 nm and excitation at 355 nm) with a 158 

fluorimeter (Fluoroskan Twinkle LB 970, BERTHOLD Technologies) after 6 h of exposure to 159 

the compounds to evaluate. Tests were performed in 96-well plates. To determine the estrogen 160 

agonist activity of dyes and effluent samples, E2 was used as a positive control and distillated 161 

water was used as a negative control. Four dye concentrations were tested in the range of 162 
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1×10
−5

g/L to 1 g/L. For the effluent samples, a series of dilutions (1 to 1000 of concentrated 163 

extract) were tested for their estrogenic activity. To determine the estrogen antagonist activity 164 

of the dyes, 4-OHT was used as a positive control and E2 (1 nM) was used as a negative 165 

control. In the antagonist test, the ability of the dye to compete with E2 for binding to ER 166 

and/or inhibit the receptor functions was evaluated. The tested dyes or 4-OHT, the positive 167 

control, were combined with 1 nM E2 before the start of the assay. All experiments were 168 

performed in triplicate. For estrogen agonist activity, the half maximal effective concentration 169 

(EC50) was calculated based on the sigmoidal dose–effect curve of E2. For estrogen antagonist 170 

activity, the half-maximal effective concentration (AC50) was calculated based on the 171 

sigmoidal dose–effect curve of 4-OHT. 172 

 173 

2.3.2. Competitive binding assay 174 

 175 

Competition between dyes and/or sample effluent and E2 was measured at various 176 

concentrations of E2. Textile dye concentration used is 0.01g/L and the textile dyeing effluent 177 

sample at a dilution factor 5 of the concentrated extract. Thus any decrease of -galactosidase 178 

activity after 6 h of exposure indicates that the dye induces a decrease in E2 binding.   179 

 180 

2.4. UV/Visible spectrum deconvolution 181 

 182 

The absorbency spectrum of a water sample can be decomposed into a few numbers of 183 

spectra (reference spectra). The shape of the UV spectrum can be considered as a linear 184 

combination of defined spectra (REF1,.., REFp) related to potential compounds present in 185 

studied water sample (Thomas et al., 1996). Sw = Σ ai × REFi +/- r, where Sw is the final 186 

spectra, ai and r are the coefficient of the i
th

 reference spectra and the admitted error, 187 

respectively. The Secomam company (Alès, France) has developed the UVPro software based 188 

on advanced UV spectral deconvolution (UV PRO, 2000) which allows creating dedicated 189 

models and determination of reference spectra from a set of studied wastewater UV spectra. 190 

The UVPro software has been applied to the textile effluent of an industrial blue jeans factory 191 

of Tunisia. The reference spectra used for the deconvolution are obtained from the 23 selected 192 

textiles dyes (Table 1). Using the deconvolution model, it is possible to assess the 193 

contribution of studied dyes in the wastewater spectrum. 194 

 195 
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3. Results / Discussion 196 

 197 

3.1. Estrogenicity / anti-estrogenicity studies of individual dyes 198 

 199 

YES allows a fast determination of both endocrine agonist and antagonist actions. The 200 

relative estrogenicity of each dye has been estimated using YES by comparison to the 201 

estrogenicity of E2 as reference compound. Typical dose-response curves for E2 have been 202 

established (data not shown).  In the present study, we have essentially analyzed azo dyes. 203 

These dyes are extensively used for dyeing cotton in textile industries. By using YES assay in 204 

the present work, we have analyzed the degree of interference of textile dyes with the 205 

endocrine system considering both the potential agonist and antagonist actions. A great 206 

variability between dyes is observed. The YES assay data illustrate a dose-dependent estrogen 207 

agonist activity from 1×10
−5 

g/L to 1 g/L for three dyes (Yellow Flavina CXL, Reactive dye 208 

red 3BS and Solvent yellow 56) (Figure 1). All these dyes have weak estrogenic effects since 209 

the maximum activity is obtained at 1 g/L.  In addition, the estrogenic effect of the dyes did 210 

not saturate precluding the determination of the EC50 value, contrary to the positive control E2 211 

(EC50 value at 1 ng/L) (Figure 1). Higher dye concentrations were not investigated, since 212 

water body dye concentration in the environment never exceeds 1 g/l. Table 2 also 213 

summarizes the fact that the twenty other dyes had no estrogenic effect by themselves. These 214 

results indicate that these dyes are not xenoestrogens that should highly impact the 215 

environment, as compared to E2 or other known xenoestrogens (e.g. bisphenol A, paraben...) 216 

(Routledge et al., 1998). 217 

In addition, some textile dyes have an anti-estrogenic activity. The anti-estrogenic 218 

reference compound 4-OHT was used to demonstrate efficient anti-estrogenic activity when 219 

incubated in the presence of 1 nM E2. The AC50 value of 4-OHT was 0.5 µM or 0.02 mg/L 220 

(Table 2). Similar experiments were conducted with the dyes. Only some dyes have been 221 

tested (Figure 2), the other ones, marked by an asterisks, could not been tested because they 222 

quenched the -galactosidase fluorescence. At a concentration of 1 g/L, antagonistic activities 223 

of these dyes vary from 100% to 10% inhibition according to their colour (Table 2 and Figure 224 

2A). Blue and red dyes show the highest inhibition potential. Everzol navy blue FBN, blue 225 

HFRL, Direct Red 89 BNL 200% and Benzopurpurine 4B (Red 4B) are the most potent 226 

inhibitors tested. Their inhibitory effects remain however inferior to that of 4-OHT. At 1 g/L, 227 

these dyes are the only ones that induce a complete inhibition of the reporter gene in yeast 228 
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cells. Among these four dyes, Blue HFRL is the strongest antagonist; its anti-estrogenic 229 

potency being approximately 750-fold less than that of 4-OHT. A reduction of 50% of -230 

galactosidase activity is observed for concentrations as low as 15 mg/L. These concentration 231 

values are thus considerably lower than the total color level found in the environment (400 232 

mg/L). The antagonist effect of three other dyes (Benzopurpurine 4B (Red 4B), Everzol Navy 233 

Blue FBN, and Direct Red 89 BNL) were, respectively, 3500-, 2500-, and 1250-fold less than 234 

that of 4-OHT. In contrast, all other dyes were either weak ER inhibitors or non-ER 235 

inhibitors. For instance, Everzol Blue ED, Red alpacide 3BL, Direct Blue 71, Blue ED 250, 236 

Direct Black VSF and Blue DERF were weak ER inhibitors. The anti-estrogenic activity for 237 

Blue DERF and Direct Blue 71 at 1 g/l, are 10% and 22%, respectively. Among these dyes, 238 

most are of the azo class with sulfonated aniline (Benzopurpurine 4B, Direct Red 89 BNL 239 

200%) and one is an anthraquinone dye, Everzol Blue ED. The Direct Black VSF AZO-240 

FREE, Blue ED 250, both being polyazo dyes, Everzo Yellow ED and Red ED (for which no 241 

structures can be disclosed) induce inhibition of -galactosidase expression by E2 with AC50 242 

> 1 g/L. 243 

Competition between the textile dyes and E2 was also measured by varying the 244 

concentration of E2 and maintaining a constant dye concentration (0.01 g/L, a concentration 245 

that does not fully inhibit E2 effect, Figure 2A). Benzopurpurine 4B, Blue HFRL and Everzol 246 

Navy Blue FBN can compete with E2 for binding to ER (Figure 2B). These dyes induces a 247 

slight inhibition of E2 estrogenic activity when E2 is used at concentrations equal or lower 248 

than 1.10
-8

 M. No effect is observed for higher concentrations of E2. For example, this 249 

activity decreased from 200000 RLU without dye to 100000 RLU in presence of the Blue 250 

HFRL at 10
-8

 M E2. This study also shows that the Red Alpacide 3BL induces a 44% 251 

inhibition of estrogenic activity and the metal-complexed azo dye yellow 4G induces a 13% 252 

inhibition (Table 2). The competitive binding assay in the YES assay showed that these dyes 253 

can bind specifically to ER in order to induce these antagonist effects. 254 

 255 

3.2. Estrogenicity / anti-estrogenicity studies of textile effluent 256 

 257 

The textile effluent sample analyzed presents a weak estrogenic effect at the maximum 258 

concentration tested (5-fold dilution). At higher concentrations of the sample, the sample 259 

compounds reduce cell viability (data not show) precluding the use of the sample for the 260 

estrogenic assay. For the dilution range (5- to 10000-fold), results from the YES bioassay 261 
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indicate that the industrial textile effluent presents a low (below 15%) but significant 262 

estrogenic activity (Figure 3A). Also, the effluent sample inhibits 60% of estrogenic activity 263 

(Figure 3B). In competition experiments, in which E2 concentration is varied and a single 264 

dilution dose of the effluent sample is used (5-fold dilution), the anti-estrogenic effect is 265 

observable until 10
-5

 M of E2 (Figure 3C). The competition effect of the sample is most 266 

significant at 10
-8

 M.  267 

The composition of the effluent sample in dyes has not been fully determined. Spectral 268 

analyses indicate that most of its components are blue dyes. Indeed, UV/Visible 269 

deconvolution of the spectrum of a blue jeans manufacturer’s effluent of Tunisia indicates that 270 

the sample contains mainly Blue DERF, Direct Blue 71, Everzol navy Blue FBN, and Grey 271 

GGL dye according to the spectrum of each individual dye (Figure 4). The deconvolution of 272 

the sample spectrum did not predict the presence of other dyes. Interestingly, our studies have 273 

demonstrated that at least three of these dyes presented anti-estrogenic activity with the YES 274 

assay. Most blue and navy blue dyes are derived from the Reactive Black 5 azo dye, which is 275 

classified Xn (harmful). It is also suspected to be mutagenic and to be associated to bladder 276 

cancer development (You et al., 2009). Nevertheless, without a complete characterization of 277 

the nature of the dyes being released in the local environment of this factory, the ant-278 

estrogenic effect of the effluent sample can’t be unequivocally be attributed to these blue 279 

dyes. Since this effluent is essentially blue, and that some blue dyes are among those 280 

presenting the highest anti-estrogenic effect, suspicion remains however high that this 281 

Tunisian factory releases harmful components in the environment. In addition, it is worth 282 

noting that the most active dyes have anti-estrogenic AC50 values (between 15 mg/L and 70 283 

mg/L) that are well below the dye concentration that can be detected in some water bodies 284 

(400 mg/L). If these same dyes are indeed present in the environment, they would present a 285 

real anti-estrogenic activity to local water consumers. 286 

 287 

4. Conclusions 288 

 289 

Our results on the endocrine effects of textile dyes come in complement of those 290 

already published on the carcinogenic and mutagenic effects of dyes. They point to the fact 291 

that some dyes, mainly blue and red dyes, may be endocrine disruptor compounds. These 292 

observations raise two issues. Concerning environmental pollution, some of these dyes may 293 

be present at concentrations high enough that they may indeed affect life quality by promoting 294 
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tumor generation. Textile sewage is therefore a potential health hazard that should require a 295 

better communication on the dyes used by the industry and its method of disposal. In that 296 

respect, it appears as particularly important to efficiently treat industrial effluent containing 297 

azo dyes before they get discharged into the environment. The second issue concerns the 298 

pharmacological effect of these textile dyes. Besides 4-OHT, few compounds have anti-299 

estrogenic activity. It is therefore of interest to note that some of the dyes that we 300 

characterized have similar anti-estrogenic activity, suggesting that they may be lead 301 

compounds for the development of new 4-OHT like anti-estrogenic compounds. 302 

 303 
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Figure legends 408 

 409 

Figure 1: Induction of estrogenic activities of some textile dyes. Average ± standard 410 

deviation (n=3). 411 

 412 

Figure 2: Anti-estrogenic activity of textile (A) dyes as measured by the yeast estrogen screen 413 

(B). Competitive binding essay of 3 textile dyes (0.01 g/l) against various concentrations of 414 

E2. Average ± standard deviation (n=3). 415 

 416 

Figure 3: Estrogenic (A) and anti-estrogenic (B) activity of textile effluent, (C) competitive 417 

binding assay of textile effluent (dilution factor 5-fold) against various concentrations of E2. 418 

Average ± standard deviation (n=3). 419 

 420 

Figure 4: UV/Visible deconvolution of textile effluent spectrum.  421 

 422 

423 
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 424 

 425 

Table 1: Textile dyes analysed in this study. 
a
Dyes and informations obtained by Everlight 426 

Chemical SA. 427 

a
Dyes and informations obtained by Everlight Chemical SA. 

b
Reactive azo dye (copper 428 

complex, 70% pure for Blue HFRL) kindly provided by a textile industry unfortunately there 429 

is no available information on its structure (Baêta et al. 2011) 430 

 431 

Table 2: Relative estrogen agonistic and antagonistic activities of industrial dyes. Estrogenic 432 

activity of textile dyes (1g/l). The anti-estrogenic activity of textile dyes has been determinate 433 

at 1g/l and expressed in 4-OHT%. The half maximal effective concentration (AC50) was 434 

calculated based on the sigmoidal dose–effect curve of 4-OHT. 435 

Compounds  Test Estrogen 

Screen agonist 

activity (E2%) 

Test Estrogen Screen 

antagonist activity (4-

OHT %)  

Test Estrogen Screen 

antagonist AC 50 (g/l) 

E2 (10
E-9

M) 100 - - 

OTH  - 100  2*10-5  

Compound CAS # Family Formula 

Benzopurpurine 4B (Red 4 B) 992-59-6 azo C34H26N6Na2O6S2 

Direct Black VSF AZO-FREE 

(Direct Black 22) 

6473-13-8 azo C44H32N13Na3O11S3 

Yellow 4 G (Solvent yellow 19) 10343-55-2 azo C16H11CrN4O8S 

Direct Blue 71 (Blue BRR) 4399-55-7 azo C40H23N7Na4O13S4 

Brown RL 12238-94-7 azo C15H14O5 

red Alpacide 3BL 12238-49-2 azo C18H10N2O2Cl2 

brown GV   C31H21N7O6Na2S 

Orange 7GL 12222-37-6 azo C42H28N7Na 4O15S4 

Direct Black PMSF  azo C37H25N5Na2O6S2 

Everzol Navy Blue FBN
a
 93912-64-2 azo C37H29ClN10O22S7Na6 

Blue HFRL
b
    

Direct Red 89 BNL 200%  azo  

Blue DERF
b
    

Everzol Yellow ED
 a
 Confidential data   

Reactive dyes red 3BS (Red 195) 93050-79-4 azo C31H19ClN7O19S6 

Everzol Blue ED
 a
    2580-78-1 antraquinone C22H18N2O11S3Na2 

Yellow Flavina CXL
b
   _ 

Everzol Navy ED 17095-24-8 azo C26H25N5O19S6Na4 

Solvent yellow 56 2481-94-9 azo C16H19N3 

Yellow 3GF
b
   C30H26N4 Na2O8 S2 

Everzol Red ED
 a
 Confidential data   

Grey GGL
b
    

Blue ED 250 89157-03-9 azo C31H24ClN7O19S6Na5 
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Benzopurpurine 4B (Red 4 B)  
0 

100  0.07  

Direct Black VSF AZO-FREE 

(Direct Black 22)  0 
20  >1  

Yellow 4 G (Solvent yellow 19)  
0 

13 >1 

Direct Blue 71 (Blue BRR)  0 22  >1 

*Brown RL  0 - - 

Red Alpacide 3BL  0 44 >1 

*Brown GV  0 -  - 

*Orange 7GL  0 -  -  

*Direct Black PMSF  0 - - 

Everzol Navy Blue FBN  0 
94  0.05  

Blue HFRL  0 100  0.015  

Direct Red 89 BNL 200%  0 
100  0.025  

Blue DERF  0 10  >1 

*Everzol Yellow ED  0 -  -  

Reactive dyes red 3BS (Red 

195)  
22 

0  0 

Everzol Blue ED  0 35  >1 

Yellow Flavina CXL)  36 0  0 

Everzol Navy ED  0 32  >1  

Solvent yellow 56  11 0  0 

Yellow 3GF  0 0  0 

Everzol Red ED  0 30  >1 

*Grey GGL  0 -  - 

Blue ED 250  0 0  0 

 436 
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