C. Ader, R. Schneider, S. Hornig, P. Velisetty, V. Vardanyan et al., Coupling of activation and inactivation gate in a K+-channel: potassium and ligand sensitivity, The EMBO Journal, vol.14, issue.18, 2009.
DOI : 10.1038/35102009

C. Ader, R. Schneider, S. Hornig, P. Velisetty, E. Wilson et al., A structural link between inactivation and block of a K+ channel, Nature Structural & Molecular Biology, vol.14, issue.6, pp.605-612, 2008.
DOI : 10.1002/prot.340120407

URL : https://hal.archives-ouvertes.fr/hal-00396760

N. Andreotti, E. Di-luccio, F. Sampieri, D. Waard, M. Sabatier et al., Molecular modeling and docking simulations of scorpion toxins and related analogs on human SKCa2 and SKCa3 channels, Peptides, vol.26, issue.7, pp.1095-1108, 2005.
DOI : 10.1016/j.peptides.2005.01.022

URL : https://hal.archives-ouvertes.fr/inserm-00381726

F. Ashcroft, From molecule to malady, Nature, vol.312, issue.7083, pp.440-447, 2006.
DOI : 10.1038/nature04707

H. Berkefeld, B. Fakler, and U. Schulte, Ca2+-Activated K+ Channels: From Protein Complexes to Function, Physiological Reviews, vol.90, issue.4, pp.1437-1459, 2010.
DOI : 10.1152/physrev.00049.2009

N. Castle, D. London, C. Creech, Z. Fajloun, J. Stocker et al., Maurotoxin: A Potent Inhibitor of Intermediate Conductance Ca2+-Activated Potassium Channels, Molecular Pharmacology, vol.63, issue.2, pp.409-418
DOI : 10.1124/mol.63.2.409

R. Chen, L. Li, and Z. Weng, ZDOCK: An initial-stage protein-docking algorithm, Proteins: Structure, Function, and Genetics, vol.162, issue.1, pp.80-87, 2003.
DOI : 10.1002/prot.10389

M. Cui, J. Shen, J. Briggs, W. Fu, J. Wu et al., Brownian Dynamics Simulations of the Recognition of the Scorpion Toxin P05 with the Small-conductance Calcium-activated Potassium Channels, Journal of Molecular Biology, vol.318, issue.2, pp.417-428, 2002.
DOI : 10.1016/S0022-2836(02)00095-5

D. Doyle, M. Cabral, J. Pfuetzner, R. Kuo, A. Gulbis et al., The Structure of the Potassium Channel: Molecular Basis of K+ Conduction and Selectivity, Science, vol.280, issue.5360, pp.69-77, 1998.
DOI : 10.1126/science.280.5360.69

E. Faber, A. Delaney, and P. Sah, SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala, Nature Neuroscience, vol.6, issue.5, pp.635-641, 2005.
DOI : 10.1016/S0149-7634(99)00043-3

G. Gan, H. Yi, M. Chen, L. Sun, W. Li et al., Structural Basis for Toxin Resistance of ??4-Associated Calcium-activated Potassium (BK) Channels, Journal of Biological Chemistry, vol.283, issue.35, pp.24177-24184, 2008.
DOI : 10.1074/jbc.M800179200

A. Gross and R. Mackinnon, Agitoxin Footprinting the Shaker Potassium Channel Pore, Neuron, vol.16, issue.2, pp.399-406, 1996.
DOI : 10.1016/S0896-6273(00)80057-4

N. Guex and M. Peitsch, SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling, Electrophoresis, vol.23, issue.15, pp.2714-2723, 1997.
DOI : 10.1002/elps.1150181505

R. Hammond, C. Bond, T. Strassmaier, T. Ngo-anh, J. Adelman et al., Small-Conductance Ca2+-Activated K+ Channel Type 2 (SK2) Modulates Hippocampal Learning, Memory, and Synaptic Plasticity, Journal of Neuroscience, vol.26, issue.6, pp.1844-1853, 2006.
DOI : 10.1523/JNEUROSCI.4106-05.2006

S. Han, H. Yi, S. Yin, Z. Chen, H. Liu et al., Structural Basis of a Potent Peptide Inhibitor Designed for Kv1.3 Channel, a Therapeutic Target of Autoimmune Disease, Journal of Biological Chemistry, vol.283, issue.27, pp.19058-19065, 2008.
DOI : 10.1074/jbc.M802054200

S. Han, S. Yin, H. Yi, S. Mouhat, S. Qiu et al., Protein???Protein Recognition Control by Modulating Electrostatic Interactions, Journal of Proteome Research, vol.9, issue.6, pp.3118-3125, 2010.
DOI : 10.1021/pr100027k

A. Lange, K. Giller, S. Hornig, M. Martin-eauclaire, O. Pongs et al., Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR, Nature, vol.13, issue.7086, pp.959-962, 2006.
DOI : 10.1038/nature04649

S. Long, E. Campbell, and R. Mackinnon, Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel, Science, vol.309, issue.5736, pp.897-903, 2005.
DOI : 10.1126/science.1116269

Z. Lu, A. Klem, and Y. Ramu, Ion conduction pore is conserved among potassium channels, Nature, vol.413, issue.6858, pp.809-813, 2001.
DOI : 10.1038/35101535

R. Mackinnon, S. Cohen, A. Kuo, A. Lee, and B. Chait, Structural Conservation in Prokaryotic and Eukaryotic Potassium Channels, Science, vol.280, issue.5360, pp.106-109, 1998.
DOI : 10.1126/science.280.5360.106

J. Pease and D. Wemmer, Solution structure of apamin determined by nuclear magnetic resonance and distance geometry, Biochemistry, vol.27, issue.22, pp.8491-8498, 1988.
DOI : 10.1021/bi00422a029

I. Regaya, C. Beeton, G. Ferrat, N. Andreotti, H. Darbon et al., Evidence for Domain-specific Recognition of SK and Kv Channels by MTX and HsTx1 Scorpion Toxins, Journal of Biological Chemistry, vol.279, issue.53, pp.55690-55696, 2004.
DOI : 10.1074/jbc.M410055200

L. Rodriguez-de, R. Vega, E. Merino, B. Becerril, and L. Possani, Novel interactions between K+ channels and scorpion toxins, Trends in Pharmacological Sciences, vol.24, issue.5, pp.222-227, 2003.
DOI : 10.1016/S0165-6147(03)00080-4

L. Rodriguez-de, R. Vega, and L. Possani, Current views on scorpion toxins specific for K+-channels, Toxicon, vol.43, issue.8, pp.865-875, 2004.
DOI : 10.1016/j.toxicon.2004.03.022

J. Sabatier, H. Zerrouk, H. Darbon, K. Mabrouk, A. Benslimane et al., P05, a new leiurotoxin I-like scorpion toxin: Synthesis and structure-activity relationships of the .alpha.-amidated analog, a ligand of calcium-activated potassium channels with increased affinity, Biochemistry, vol.32, issue.11, pp.2763-2770, 1993.
DOI : 10.1021/bi00062a005

V. Shakkotai, I. Regaya, H. Wulff, Z. Fajloun, H. Tomita et al., Design and Characterization of a Highly Selective Peptide Inhibitor of the Small Conductance Calcium-activated K+ Channel, SkCa2, Journal of Biological Chemistry, vol.276, issue.46, pp.43145-43151, 2001.
DOI : 10.1074/jbc.M106981200

R. Stackman, R. Hammond, E. Linardatos, A. Gerlach, J. Maylie et al., Small conductance Ca 2+ -activated K + channels modulate synaptic plasticity and memory encoding, J Neurosci, vol.22, issue.23, pp.10163-10171, 2002.

M. Stocker, Ca2+-activated K+ channels: molecular determinants and function of the SK family, Nature Reviews Neuroscience, vol.19, issue.10, pp.758-770, 2004.
DOI : 10.1038/84758

J. Subbotina, V. Yarov-yarovoy, J. Lees-miller, S. Durdagi, J. Guo et al., Structural refinement of the hERG1 pore and voltage-sensing domains with ROSETTA-membrane and molecular dynamics simulations, Proteins: Structure, Function, and Bioinformatics, vol.17, issue.14, pp.2922-2934, 2010.
DOI : 10.1002/prot.22815

X. Tao, J. Avalos, J. Chen, and R. Mackinnon, Crystal Structure of the Eukaryotic Strong Inward-Rectifier K+ Channel Kir2.2 at 3.1 A Resolution, Science, vol.326, issue.5960, pp.1668-1674, 2009.
DOI : 10.1126/science.1180310

G. Tseng, K. Sonawane, Y. Korolkova, M. Zhang, J. Liu et al., Probing the Outer Mouth Structure of the hERG Channel with Peptide Toxin Footprinting and Molecular Modeling, Biophysical Journal, vol.92, issue.10, pp.3524-3540, 2007.
DOI : 10.1529/biophysj.106.097360

J. Wang, P. Cieplak, and P. Kollman, How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?, Journal of Computational Chemistry, vol.18, issue.12, pp.1049-1074, 1999.
DOI : 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F

O. Wittekindt, V. Visan, H. Tomita, F. Imtiaz, J. Gargus et al., An Apamin- and Scyllatoxin-Insensitive Isoform of the Human SK3 Channel, Molecular Pharmacology, vol.65, issue.3, pp.788-791, 2004.
DOI : 10.1124/mol.65.3.788

H. Wulff and B. Zhorov, Channel Modulators for the Treatment of Neurological Disorders and Autoimmune Diseases, Chemical Reviews, vol.108, issue.5, pp.1744-1773, 2008.
DOI : 10.1021/cr078234p

H. Yi, Z. Cao, S. Yin, C. Dai, Y. Wu et al., Channel with Its Specific BeKm-1 Peptide:?? Insights into the Selectivity of Molecular Recognition, Journal of Proteome Research, vol.6, issue.2, pp.611-620, 2007.
DOI : 10.1021/pr060368g

S. Yin, L. Jiang, H. Yi, S. Han, D. Yang et al., Different Residues in Channel Turret Determining the Selectivity of ADWX-1 Inhibitor Peptide between Kv1.1 and Kv1.3 Channels, Journal of Proteome Research, vol.7, issue.11, pp.4890-4897, 2008.
DOI : 10.1021/pr800494a

. Fig, Importance of other amino acid residues of the SK3 channel outer vestibule on the potency of BmP05 and ChTX. (a-j) Representative current traces of SK3 channel mutants showing current blocks by BmP05 and ChTX. (a, d) Reduced inhibition of SK3-D492N and SK3-D518N currents by 100 nM BmP05, Significant inhibition of SK3-Q493A, SK3-D495N, and SK3-H522A currents by 100 nM BmP05. (f-j) Decreased inhibition of SK3-D492N, SK3-Q493A, SK3-D495N, SK3-D518N, and SK3-H522A currents by 100 nM ChTX. (k)

. Fig, Mechanism of selective SK3 channel recognition by scorpion toxins, as addressed by molecular modeling and docking simulation approaches. (a) Top view of the narrow gateway in the SK3 channel turrets. The large and small rings of basic residues are designated by dashed lines, colored yellow and purple, respectively. (b)