R. Planells-cases and T. Jentsch, Chloride channelopathies, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1792, issue.3, pp.173-89, 2009.
DOI : 10.1016/j.bbadis.2009.02.002

URL : https://hal.archives-ouvertes.fr/hal-00501604

A. Thiemann, S. Grunder, M. Pusch, and T. Jentsch, A chloride channel widely expressed in epithelial and non-epithelial cells, Nature, vol.356, issue.6364, pp.57-60, 1992.
DOI : 10.1038/356057a0

S. Grunder, A. Thiemann, M. Pusch, and T. Jentsch, Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume, Nature, vol.360, issue.6406, pp.759-62, 1992.
DOI : 10.1038/360759a0

S. Jordt and T. Jentsch, Molecular dissection of gating in the ClC-2 chloride channel, The EMBO Journal, vol.16, issue.7, pp.1582-92, 1997.
DOI : 10.1093/emboj/16.7.1582

M. Bosl, V. Stein, and C. Hubner, Male germ cells and photoreceptors, both dependent on close cell???cell interactions, degenerate upon ClC-2 Cl??? channel disruption, The EMBO Journal, vol.20, issue.6, pp.1289-99, 2001.
DOI : 10.1093/emboj/20.6.1289

J. Blanz, M. Schweizer, and M. Auberson, Leukoencephalopathy upon Disruption of the Chloride Channel ClC-2, Journal of Neuroscience, vol.27, issue.24, pp.6581-6590, 2007.
DOI : 10.1523/JNEUROSCI.0338-07.2007

A. Sik, R. Smith, and T. Freund, Distribution of chloride channel-2-immunoreactive neuronal and astrocytic processes in the hippocampus, Neuroscience, vol.101, issue.1, pp.51-65, 2000.
DOI : 10.1016/S0306-4522(00)00360-2

R. Smith, G. Clayton, C. Wilcox, K. Escudero, and K. Staley, Differential expression of an inwardly rectifying chloride conductance in rat brain neurons: a potential mechanism for cell-specific modulation of postsynaptic inhibition, J Neurosci, vol.15, issue.5 2, pp.4057-67, 1995.

I. Rinke, J. Artmann, and V. Stein, ClC-2 Voltage-Gated Channels Constitute Part of the Background Conductance and Assist Chloride Extrusion, Journal of Neuroscience, vol.30, issue.13, pp.4776-86, 2010.
DOI : 10.1523/JNEUROSCI.6299-09.2010

S. Ratte and S. Prescott, ClC-2 Channels Regulate Neuronal Excitability, Not Intracellular Chloride Levels, Journal of Neuroscience, vol.31, issue.44, pp.15838-15881, 2011.
DOI : 10.1523/JNEUROSCI.2748-11.2011

K. Haug, M. Warnstedt, and A. Alekov, Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies, Nature Genetics, vol.33, issue.4, pp.527-559, 2003.
DOI : 10.1038/ng1121

D. Agostino, D. Bertelli, M. Gallo, and S. , Mutations and polymorphisms of the CLCN2 gene in idiopathic epilepsy, Neurology, vol.63, issue.8, pp.1500-1502, 2004.
DOI : 10.1212/01.WNL.0000142093.94998.1A

E. Stogmann, P. Lichtner, and C. Baumgartner, Mutations in the CLCN2 gene are a rare cause of idiopathic generalized epilepsy syndromes, Neurogenetics, vol.17, issue.4, pp.265-273, 2006.
DOI : 10.1007/s10048-006-0057-x

K. Everett, B. Chioza, and J. Aicardi, Linkage and mutational analysis of CLCN2 in childhood absence epilepsy, Epilepsy Research, vol.75, issue.2-3, pp.2-3145, 2007.
DOI : 10.1016/j.eplepsyres.2007.05.004

C. Saint-martin, G. Gauvain, and G. Teodorescu, Two novel CLCN2 mutations accelerating chloride channel deactivation are associated with idiopathic generalized epilepsy, Hum Mutat, 2009.

R. Combi, D. Grioni, and M. Contri, Clinical and genetic familial study of a large cohort of Italian children with idiopathic epilepsy, Brain Research Bulletin, vol.79, issue.2, pp.89-96, 2009.
DOI : 10.1016/j.brainresbull.2009.01.008

A. Kleefuss-lie, W. Friedl, and S. Cichon, CLCN2 variants in idiopathic generalized epilepsy, Nature Genetics, vol.41, issue.9, pp.954-959, 2009.
DOI : 10.1002/humu.20876

K. Haug, M. Warnstedt, and A. Alekov, Retraction: Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies, Nature Genetics, vol.41, issue.9, 2009.
DOI : 10.1038/ng1121

M. Niemeyer, L. Cid, and F. Sepulveda, No evidence for a role of CLCN2 variants in idiopathic generalized epilepsy, Nature Genetics, vol.1792, issue.1, p.3, 2010.
DOI : 10.1080/10409230701829110

M. Van-der-knaap, P. Barth, and H. Stroink, Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children, Annals of Neurology, vol.241, issue.3, pp.324-358, 1995.
DOI : 10.1002/ana.410370308

M. Van-der-knaap, P. Barth, G. Vrensen, and J. Valk, Histopathology of an infantile-onset spongiform leukoencephalopathy with a discrepantly mild clinical course, Acta Neuropathologica, vol.92, issue.2, pp.206-218, 1996.
DOI : 10.1007/s004010050510

M. Van-der-knaap, I. Boor, and R. Estevez, Megalencephalic leukoencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain ion and water homoeostasis, The Lancet Neurology, vol.11, issue.11, 2012.
DOI : 10.1016/S1474-4422(12)70192-8

P. Leegwater, B. Yuan, and J. Van-der-steen, Mutations of MLC1 (KIAA0027), encoding a putative membrane protein, cause megalencephalic leukoencephalopathy with subcortical cysts. A m J H u m Genet, pp.831-839, 2001.

M. Van-der-knaap, V. Lai, and W. Kohler, Megalencephalic leukoencephalopathy with cysts without MLC1 defect, Ann Neurol, vol.67, issue.6, pp.834-841, 2010.

G. Scheper, C. Van-berkel, and L. Leisle, as Candidate Gene for Megalencephalic Leukoencephalopathy with Subcortical Cysts, Genetic Testing and Molecular Biomarkers, vol.14, issue.2, pp.255-262, 2010.
DOI : 10.1089/gtmb.2009.0148

T. Lopez-hernandez, M. Ridder, and M. Montolio, Mutant GlialCAM Causes Megalencephalic Leukoencephalopathy with Subcortical Cysts, Benign Familial Macrocephaly, and Macrocephaly with Retardation and Autism, The American Journal of Human Genetics, vol.88, issue.4, pp.422-454, 2011.
DOI : 10.1016/j.ajhg.2011.02.009

E. Jeworutzki, T. Lopez-hernandez, and X. Capdevila-nortes, GlialCAM, a Protein Defective in a Leukodystrophy, Serves as a ClC-2 Cl??? Channel Auxiliary Subunit, Neuron, vol.73, issue.5, pp.951-61, 2012.
DOI : 10.1016/j.neuron.2011.12.039

M. Van-der-knaap, S. Breiter, S. Naidu, A. Hart, and J. Valk, Defining and Categorizing Leukoencephalopathies of Unknown Origin: MR Imaging Approach, Radiology, vol.213, issue.1, pp.121-154, 1999.
DOI : 10.1148/radiology.213.1.r99se01121

R. Schiffmann and M. Van-der-knaap, Invited Article: An MRI-based approach to the diagnosis of white matter disorders, Neurology, vol.72, issue.8, pp.750-759, 2009.
DOI : 10.1212/01.wnl.0000343049.00540.c8

S. Dreha-kulaczewski, K. Brockmann, and M. Henneke, Assessment of myelination in hypomyelinating disorders by quantitative MRI, J Magn Reson Imaging, 2012.

Z. Patay, Diffusion-weighted MR imaging in leukodystrophies, European Radiology, vol.16, issue.Suppl 2, pp.2284-303, 2005.
DOI : 10.1007/s00330-005-2846-2

V. Benfenati and S. Ferroni, Water transport between CNS compartments: functional and molecular interactions between aquaporins and ion channels, Neuroscience, vol.168, issue.4, pp.926-966, 2010.
DOI : 10.1016/j.neuroscience.2009.12.017

J. Rash, Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system, Neuroscience, vol.168, issue.4, pp.982-1008, 2010.
DOI : 10.1016/j.neuroscience.2009.10.028

C. Neusch, N. Rozengurt, R. Jacobs, H. Lester, and P. Kofuji, Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination, J Neurosci, vol.21, issue.15, pp.5429-5467, 2001.

D. Menichella, M. Majdan, and R. Awatramani, Genetic and Physiological Evidence That Oligodendrocyte Gap Junctions Contribute to Spatial Buffering of Potassium Released during Neuronal Activity, Journal of Neuroscience, vol.26, issue.43, pp.10984-91, 2006.
DOI : 10.1523/JNEUROSCI.0304-06.2006

H. Paulson, J. Garbern, and T. Hoban, Transient central nervous system white matter abnormality in X-linked Charcot-Marie-Tooth disease, Annals of Neurology, vol.31, issue.4, pp.429-463, 2002.
DOI : 10.1002/ana.10305

C. Siskind, S. Feely, S. Bernes, M. Shy, and J. Garbern, Persistent CNS dysfunction in a boy with CMT1X, Journal of the Neurological Sciences, vol.279, issue.1-2, pp.109-122, 2009.
DOI : 10.1016/j.jns.2008.12.031

P. Boor, K. De-groot, and Q. Waisfisz, MLC1: A Novel Protein in Distal Astroglial Processes, Journal of Neuropathology & Experimental Neurology, vol.64, issue.5, pp.412-421, 2005.
DOI : 10.1093/jnen/64.5.412

M. Ridder, I. Boor, and J. Lodder, Megalencephalic leucoencephalopathy with cysts: defect in chloride currents and cell volume regulation, Brain, vol.134, issue.11, pp.3342-54, 2011.
DOI : 10.1093/brain/awr255

J. Van-der-voorn, P. Pouwels, and A. Hart, Childhood White Matter Disorders: Quantitative MR Imaging and Spectroscopy, Radiology, vol.241, issue.2, pp.510-517, 2006.
DOI : 10.1148/radiol.2412051345

S. Figure, Validation of the ClC-2 antibodies in fluorescent immunohistochemistry

. Anti-clc, A) and SC-20122 (B) show immunoreactivity (green) in GFAP + astrocytic processes (red) in the brain, whereas HPA24108 (C) does not. A normal rabbit IgG isotype control (D) does not show immunoreactivity in astrocytes either. E and F show a blocking experiment in which the GTX113403 antibody was preincubated with its antigen (F) or only serum (E) Nuclei are stained with DAPI (blue) Original agnifications, pp.400-422, 113403.

S. Figure, ClC-2, GlialCAM and MLC1 at blood-brain and cerebrospinal fluid-brain barriers

. Fig, Schematic view of action potential-driven potassium and water fluxes With each depolarization, sodium ions (Na + ) enter the axon at nodes of Ranvier. The compensatory exit of potassium ions (K + ) occurs at the paranodal axonal plasma membrane. K + and water pass through successive layers of myelin and enter the astrocytic syncytium via gap junctions, constituted by connexin32 (Cx32) and connexin47 (Cx47) The locations of ClC-2, MLC1, GlialCAM, the water channel aquaporin-4 (AQP4), the potassium channel Kir4.1 and the connexins are indicated by their respective symbols. Drawing by Dr. G.C. Scheper, modified from Rash 10 and van der Knaap 11 with permission, p.25

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, issue.14, pp.1754-60, 2009.
DOI : 10.1093/bioinformatics/btp324

H. Li, B. Handsaker, and A. Wysoker, The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, issue.16, pp.2078-2087, 2009.
DOI : 10.1093/bioinformatics/btp352

C. Saint-martin, G. Gauvain, and G. Teodorescu, mutations accelerating chloride channel deactivation are associated with idiopathic generalized epilepsy, Human Mutation, vol.572, issue.Pt 1, pp.397-405, 2009.
DOI : 10.1002/humu.20876

G. Scheper, C. Van-berkel, and L. Leisle, as Candidate Gene for Megalencephalic Leukoencephalopathy with Subcortical Cysts, Genetic Testing and Molecular Biomarkers, vol.14, issue.2, pp.255-262, 2010.
DOI : 10.1089/gtmb.2009.0148

L. Van-berge, J. Kevenaar, and E. Polder, Pathogenic mutations causing LBSL affect mitochondrial aspartyl-tRNA synthetase in diverse ways, Biochemical Journal, vol.450, issue.2, pp.345-50, 2013.
DOI : 10.1093/emboj/18.22.6532

C. Ladner, Y. J. Turner, R. Edwards, and R. , Visible fluorescent detection of proteins in polyacrylamide gels without staining13-20. 7. van den Pol AN, Gorcs T. Synaptic relationships between neurons containing vasopressin, gastrin-releasing peptide, vasoactive intestinal polypeptide, and glutamate decarboxylase immunoreactivity in the suprachiasmatic nucleus: dual ultrastructural immunocytochemistry with gold-substituted silver peroxidase, Anal Biochem J Comp Neurol, vol.326252, issue.14, pp.507-528, 1986.

R. Dutzler, E. Campbell, M. Cadene, B. Chait, and R. Mackinnon, X-ray structure of a ClC chloride channel at 3.0?????? reveals the molecular basis of anion selectivity, Nature, vol.415, issue.6869, pp.287-94, 2002.
DOI : 10.1038/415287a

I. Cornejo, M. Niemeyer, and L. Zuniga, Rapid recycling of ClC-2 chloride channels between plasma membrane and endosomes: Role of a tyrosine endocytosis motif in surface retrieval, Journal of Cellular Physiology, vol.555, issue.3, pp.650-657, 2009.
DOI : 10.1002/jcp.21900

J. Rash, I. Boor, and R. Estevez, Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system. Neuroscience Megalencephalic leukoencephalopathy with subcortical cysts: chronic white matter oedema due to a defect in brain ion and water homoeostasis, Lancet Neurol, vol.16811, issue.1111, pp.982-1008973, 2010.