

Modulation of a decision-making process by spatiotemporal spike patterns decoding: evidence from spike-train metrics analysis and spiking neural network modeling

Laureline Logiaco, René Quilodran, Wulfram Gerstner, Emmanuel Procyk, Angelo Arleo

► To cite this version:

Laureline Logiaco, René Quilodran, Wulfram Gerstner, Emmanuel Procyk, Angelo Arleo. Modulation of a decision-making process by spatiotemporal spike patterns decoding: evidence from spike-train metrics analysis and spiking neural network modeling. Gennady S Cymbalyuk and Astrid A Prinz. the Twenty Second Annual Computational Neuroscience Meeting: CNS*2013, Jul 2013, paris, France. Biomed Central, 14 (Suppl 1), pp.P10, 2013. <isserm-00842292>

HAL Id: inserm-00842292 http://www.hal.inserm.fr/inserm-00842292

Submitted on 8 Jul 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

POSTER PRESENTATION

Open Access

Modulation of a decision-making process by spatiotemporal spike patterns decoding: evidence from spike-train metrics analysis and spiking neural network modeling

Laureline Logiaco^{1,4*}, René Quilodran², Wulfram Gerstner³, Emmanuel Procyk⁴, Angelo Arleo¹

From Twenty Second Annual Computational Neuroscience Meeting: CNS*2013 Paris, France. 13-18 July 2013

While monkeys perform a task alternating between behavioral adaptation –relying on feedback monitoring and memory of previous choices– and repetition of previous actions, firing rates in dorsal Anterior Cingulate Cortex (dACC) modulate with cognitive control levels [1]. Further, it has been hypothesized that dorsolateral Prefrontal Cortex (dIPFC) could make use of dACC signals to take the adapted decision [2]. However, little is known about whether dACC spike timing may participate to behavioral adaptation signaling, and how multiple unit activities may be jointly decoded by dIPFC. We tested the hypothesis that temporal (or spatiotemporal) pattern matching mediate information transmission by dACC.

We used spike-train metrics [3] to decode dACC activity recorded in a problem solving task [1] (336 cells, 2 monkeys). We computed a similarity measure between every spike train and the activity patterns in different task epochs for classification. When computing the similarity, we explored different degrees of (i) timing sensitivity and (ii) distinction between spikes from different neurons, which led to different classification performances.

We found that timing sensitivity could improve behavioral adaptation vs. repetition classification of single unit spike trains. Optimal decoding occurred when accounting for spike times at a resolution <= 200 ms. Furthermore, spike-train metrics decoding of unitary discharges was related to the monkeys' response time. A downstream neural decoder could exploit this temporal information through coincidence detection determined by synaptic and membrane time constants. In addition, when decoding two units jointly, we found that each pair had a specific optimal distinction degree between spikes coming from the two different neurons. In a realistic neural decoder, the tuning of this distinction degree might occur through non-linear dendritic integration.

To further investigate the computational properties of temporal decoding in the context of decision-making, we are implementing a recurrent spiking neural network with connectivity leading to attractor dynamics. In this framework, each decision is mapped to a state in which a corresponding neural subpopulation shows elevated activity, as observed experimentally in dIPFC [4]. In addition, neurons will undergo membrane properties adaptation [5] and short-term plasticity, leading to history-of-choices dependent temporal spike patterns. We will investigate how this temporal-spike-patterns memory of past choices could interact with dACC feedback-specific temporal patterns to lead to adapted decision. The feasibility and putative advantages of spike-timing-dependent-plasticity-based learning of response selectivity to the appropriate dACCdlPFC temporal correlations will be considered.

Conclusions

The spatiotemporal structure of spike trains appears to be relevant in this cognitive task. This opens the possibility for pattern matching-based decoding of dACC activity, potentially leading to adapted behavioral response.

Author details

Full list of author information is available at the end of the article

© 2013 Logiaco et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

¹CNRS - UPMC Univ P6, Laboratory of Neurobiology of Adaptive Processes, UMR 7102, Paris, 75005, France

 ³School of Computer and Communication Sciences and Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne EPFL, Switzerland.
⁴INSERM U846, Stem Cell and Brain Research Institute, Bron, France; University of Lyon, University of Lyon1, 69500, France.

Published: 8 July 2013

References

- 1. Quilodran R, Rothe M, Procyk E: Behavioral shifts and action valuation in the anterior cingulate cortex. *Neuron* 2008, **57(2)**:314-325.
- Khamassi M, Lallee S, Enel P, Procyk E, Dominey PF: Robot cognitive control with a neurophysiologically inspired reinforcement learning model. Front Neurorobot 2011, 5:1.
- Victor JD, Purpura KP: Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol 1996, 76(2):1310-1326.
- Procyk E, Goldman-Rakic PS: Modulation of dorsolateral prefrontal delay activity during self-organized behavior. J Neurosci 2006, 26(44):11313-11323.
- Mensi S, Naud R, Pozzorini C, Avermann M, Petersen CC, Gerstner W: Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. *J Neurophysiol* 2012, 107(6):1756-1775.

doi:10.1186/1471-2202-14-S1-P10

Cite this article as: Logiaco *et al.*: Modulation of a decision-making process by spatiotemporal spike patterns decoding: evidence from spike-train metrics analysis and spiking neural network modeling. *BMC Neuroscience* 2013 **14**(Suppl 1):P10.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit