Intracellular fate of carbon nanotubes inside murine macrophages: pH-dependent detachment of iron catalyst nanoparticles. - Archive ouverte HAL Access content directly
Journal Articles Particle and Fibre Toxicology Year : 2013

Intracellular fate of carbon nanotubes inside murine macrophages: pH-dependent detachment of iron catalyst nanoparticles.

(1) , (2) , (2, 3) , (2) , (2) , (2, 4) , (4) , (5) , (2) , (6) , (6) , (7) , (2) , (8)
1
2
3
4
5
6
7
8
Cyrill Bussy
  • Function : Author
  • PersonId : 959433
Erwan Paineau
Nathalie Brun
  • Function : Author
  • PersonId : 943095
Claudie Mory
  • Function : Author
  • PersonId : 943096
Murielle Salomé
  • Function : Author
  • PersonId : 943098
Mathieu Pinault
  • Function : Author
  • PersonId : 933671
Mickaël Huard
  • Function : Author
  • PersonId : 943099
Esther Belade
  • Function : Author
  • PersonId : 943100
Lucie Armand
  • Function : Author
  • PersonId : 943101
Jorge Boczkowski
  • Function : Author
  • PersonId : 857093
Pascale Launois
  • Function : Author
  • PersonId : 933675
Sophie Lanone
Connectez-vous pour contacter l'auteur

Abstract

BACKGROUND: Carbon nanotubes (CNT) are a family of materials featuring a large range of length, diameter, numbers of walls and, quite often metallic impurities coming from the catalyst used for their synthesis. They exhibit unique physical properties, which have already led to an extensive development of CNT for numerous applications. Because of this development and the resulting potential increase of human exposure, an important body of literature has been published with the aim to evaluate the health impact of CNT. However, despite evidences of uptake and long-term persistence of CNT within macrophages and the central role of those cells in the CNT-induced pulmonary inflammatory response, a limited amount of data is available so far on the CNT fate inside macrophages. Therefore, the overall aim of our study was to investigate the fate of pristine single walled CNT (SWCNT) after their internalization by macrophages. METHODS: To achieve our aim, we used a broad range of techniques that aimed at getting a comprehensive characterization of the SWCNT and their catalyst residues before and after exposure of murine macrophages: X-ray diffraction (XRD), High Resolution (HR) Transmission Electron Microscopy (TEM), High Angle Annular Dark Field-Scanning TEM (HAADF-STEM) coupled to Electron Energy Loss Spectroscopy (EELS), as well as micro-X-ray fluorescence mapping (μXRF), using synchrotron radiation. RESULTS: We showed 1) the rapid detachment of part of the iron nanoparticles initially attached to SWCNT which appeared as free iron nanoparticles in the cytoplasm and nucleus of CNT-exposed murine macrophages, and 2) that blockade of intracellular lysosomal acidification prevented iron nanoparticles detachment from CNT bundles and protected cells from CNT downstream toxicity. CONCLUSIONS: The present results, while obtained with pristine SWCNT, could likely be extended to other catalyst-containing nanomaterials and surely open new ways in the interpretation and understanding of CNT toxicity.
Fichier principal
Vignette du fichier
1743-8977-10-24.pdf (1.41 Mo) Télécharger le fichier
Vignette du fichier
1743-8977-10-24-S1.PDF (29.46 Ko) Télécharger le fichier
Vignette du fichier
1743-8977-10-24-S2.PDF (185.46 Ko) Télécharger le fichier
Vignette du fichier
1743-8977-10-24-S3.PDF (41.93 Ko) Télécharger le fichier
Vignette du fichier
1743-8977-10-24.xml (76.67 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Format : Other
Format : Other
Format : Other
Format : Other

Dates and versions

inserm-00840223 , version 1 (02-07-2013)

Identifiers

Cite

Cyrill Bussy, Erwan Paineau, Julien Cambedouzou, Nathalie Brun, Claudie Mory, et al.. Intracellular fate of carbon nanotubes inside murine macrophages: pH-dependent detachment of iron catalyst nanoparticles.. Particle and Fibre Toxicology, 2013, 10 (1), pp.24. ⟨10.1186/1743-8977-10-24⟩. ⟨inserm-00840223⟩
256 View
273 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More