T. Manolio, F. Collins, N. Cox, D. Goldstein, L. Hindorff et al., Finding the missing heritability of complex diseases, Nature, vol.41, issue.7265, pp.747-753, 2009.
DOI : 10.1038/nature08494

R. Makowsky, N. Pajewski, Y. Klimentidis, A. Vazquez, and C. Duarte, Beyond Missing Heritability: Prediction of Complex Traits, PLoS Genetics, vol.175, issue.4, p.1002051, 2011.
DOI : 10.1371/journal.pgen.1002051.s001

E. Jablonka and G. Raz, Transgenerational Epigenetic Inheritance: Prevalence, Mechanisms, and Implications for the Study of Heredity and Evolution, The Quarterly Review of Biology, vol.84, issue.2, pp.131-176, 2009.
DOI : 10.1086/598822

D. Ho and W. Burggren, Epigenetics and transgenerational transfer: a physiological perspective, Journal of Experimental Biology, vol.213, issue.1, pp.3-16, 2010.
DOI : 10.1242/jeb.019752

R. Holliday, Epigenetics: A Historical Overview, Epigenetics, vol.1, issue.2, pp.76-80, 2006.
DOI : 10.4161/epi.1.2.2762

E. Jablonka and M. Lamb, The Changing Concept of Epigenetics, Annals of the New York Academy of Sciences, vol.401, issue.Suppl. 1, pp.82-96, 2002.
DOI : 10.1111/j.1749-6632.2002.tb04913.x

A. Goldberg, C. Allis, and E. Bernstein, Epigenetics: A Landscape Takes Shape, Cell, vol.128, issue.4, pp.635-638, 2007.
DOI : 10.1016/j.cell.2007.02.006

B. Krause, L. Sobrevia, and P. Casanello, Epigenetics: New Concepts of Old Phenomena in Vascular Physiology, Current Vascular Pharmacology, vol.7, issue.4, pp.513-520, 2009.
DOI : 10.2174/157016109789043883

M. Ptashne, On the use of the word ???epigenetic???, Current Biology, vol.17, issue.7, pp.233-236, 2007.
DOI : 10.1016/j.cub.2007.02.030

M. Ptashne, Faddish Stuff: Epigenetics and the Inheritance of Acquired Characteristics, The FASEB Journal, vol.27, issue.1, pp.1-2, 2013.
DOI : 10.1096/fj.13-0101ufm

N. Youngson and E. Whitelaw, Transgenerational Epigenetic Effects, Annual Review of Genomics and Human Genetics, vol.9, issue.1, pp.233-257, 2008.
DOI : 10.1146/annurev.genom.9.081307.164445

URL : http://arrow.latrobe.edu.au:8080/vital/access/manager/Repository/latrobe:35829/SOURCE1

E. Mazzio and K. Soliman, Basic concepts of epigenetics, Epigenetics, vol.1, issue.2, pp.119-130, 2012.
DOI : 10.1016/j.mito.2009.09.006

R. Feil and M. Fraga, Epigenetics and the environment: emerging patterns and implications, Nature Reviews Genetics, vol.29, pp.97-109, 2012.
DOI : 10.1038/nrg3142

L. Daxinger and E. Whitelaw, Understanding transgenerational epigenetic inheritance via the gametes in mammals, Nature Reviews Genetics, vol.14, pp.153-162, 2012.
DOI : 10.1038/nrg3188

N. Cockett, S. Jackson, T. Shay, F. Farnir, S. Berghmans et al., Polar Overdominance at the Ovine callipyge Locus, Science, vol.273, issue.5272, pp.236-238, 1996.
DOI : 10.1126/science.273.5272.236

A. Van-laere, M. Nguyen, M. Braunschweig, C. Nezer, C. Collette et al., A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig, Nature, vol.425, issue.6960, pp.832-836, 2003.
DOI : 10.1038/nature02064

H. Park, L. Jacobsson, P. Wahlberg, and P. Siegel, QTL analysis of body composition and metabolic traits in an intercross between chicken lines divergently selected for growth, Physiological Genomics, vol.25, issue.2, pp.216-223, 2006.
DOI : 10.1152/physiolgenomics.00113.2005

M. Lyon, Gene Action in the X-chromosome of the Mouse (Mus musculus L.), Nature, vol.91, issue.4773, pp.372-373, 1961.
DOI : 10.1016/0014-4827(60)90023-9

C. Morey and P. Avner, The Demoiselle of X-Inactivation: 50 Years Old and As Trendy and Mesmerising As Ever, PLoS Genetics, vol.42, issue.7, p.1002212, 2011.
DOI : 10.1371/journal.pgen.1002212.g003

Y. Itoh, K. Replogle, Y. Kim, J. Wade, D. Clayton et al., Sex bias and dosage compensation in the zebra finch versus chicken genomes: General and specialized patterns among birds, Genome Research, vol.20, issue.4, pp.512-518, 2010.
DOI : 10.1101/gr.102343.109

H. Ellegren, L. Hultin-rosenberg, B. Brunström, L. Dencker, K. Kultima et al., Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes, BMC Biology, vol.5, issue.1, p.40, 2007.
DOI : 10.1186/1741-7007-5-40

P. Julien, D. Brawand, M. Soumillon, A. Necsulea, A. Liechti et al., Mechanisms and Evolutionary Patterns of Mammalian and Avian Dosage Compensation, PLoS Biology, vol.392, issue.5, p.1001328, 2012.
DOI : 10.1371/journal.pbio.1001328.s022

M. Teranishi, Y. Shimada, T. Hori, O. Nakabayashi, T. Kikuchi et al., Transcripts of the MHM region on the chicken Z chromosome accumulate as non-coding RNA in the nucleus of female cells adjacent to the DMRT1 locus, Chromosome Research, vol.9, issue.2, pp.147-165, 2001.
DOI : 10.1023/A:1009235120741

E. Melamed and A. Arnold, Regional differences in dosage compensation on the chicken Z chromosome, Genome Biology, vol.8, issue.9, p.202, 2007.
DOI : 10.1186/gb-2007-8-9-r202

J. Mank and H. Ellegren, All dosage compensation is local: Gene-by-gene regulation of sex-biased expression on the chicken Z chromosome, Heredity, vol.66, issue.3, pp.312-320, 2009.
DOI : 10.1101/gr.5217506

S. Zhang, S. Mathur, G. Hattem, O. Tassy, and O. Pourquié, Sex-dimorphic gene expression and ineffective dosage compensation of Z-linked genes in gastrulating chicken embryos, BMC Genomics, vol.11, issue.1, p.13, 2010.
DOI : 10.1186/1471-2164-11-13

URL : https://hal.archives-ouvertes.fr/inserm-00622569

A. Livernois, J. Graves, and P. Waters, The origin and evolution of vertebrate sex chromosomes and dosage compensation, Heredity, vol.116, issue.1, pp.50-58, 2012.
DOI : 10.1016/S0168-9525(01)02446-5

D. Rocha, S. Ferguson-smith, and A. , Genomic imprinting, Current Biology, vol.14, issue.16, pp.646-649, 2004.
DOI : 10.1016/j.cub.2004.08.007

A. Prickett and R. Oakey, A survey of tissue-specific genomic imprinting in mammals, Molecular Genetics and Genomics, vol.15, issue.18, pp.621-630, 2012.
DOI : 10.1007/s00438-012-0708-6

F. Ideraabdullah, S. Vigneau, and M. Bartolomei, Genomic imprinting mechanisms in mammals, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.647, issue.1-2, pp.77-85, 2008.
DOI : 10.1016/j.mrfmmm.2008.08.008

T. Moore and D. Haig, Genomic imprinting in mammalian development: a parental tug-of-war, Trends in Genetics, vol.7, issue.2, pp.45-49, 1991.
DOI : 10.1016/0168-9525(91)90230-N

D. Haig and C. Graham, Genomic imprinting and the strange case of the insulin-like growth factor II receptor, Cell, vol.64, pp.1045-1046, 1991.

Y. Iwasa, 7 The Conflict Theory of Genomic Imprinting: How Much Can Be Explained?, Curr Top Dev Biol, vol.40, pp.255-293, 1998.
DOI : 10.1016/S0070-2153(08)60369-5

R. Fairfull, Heterosis.I nPoultry Breeding and Genetics, pp.913-933, 1990.

M. Tuiskula-haavisto and J. Vilkki, Parent-of-origin specific QTL ??? a possibility towards understanding reciprocal effects in chicken and the origin of imprinting, Cytogenetic and Genome Research, vol.117, issue.1-4, pp.305-312, 2007.
DOI : 10.1159/000103192

S. Rowe, R. Pong-wong, C. Haley, S. Knott, D. Koning et al., Detecting parent of origin and dominant QTL in a two-generation commercial poultry pedigree using variance component methodology, Genetics Selection Evolution, vol.41, issue.1, p.6, 2009.
DOI : 10.1186/1297-9686-41-6

P. Sharman, D. Morrice, A. Law, D. Burt, and P. Hocking, Quantitative trait loci for bone traits segregating independently of those for growth in an F<sub>2</sub> broiler ?? layer cross, Cytogenetic and Genome Research, vol.117, issue.1-4, pp.296-304, 2007.
DOI : 10.1159/000103191

M. Tuiskula-haavisto, D. Koning, D. Honkatukia, M. Schulman, N. Mäki-tanila et al., Quantitative trait loci with parent-of-origin effects in chicken, Genetical Research, vol.84, issue.1, pp.57-66, 2004.
DOI : 10.1017/S0016672304006950

P. Navarro, P. Visscher, S. Knott, D. Burt, P. Hocking et al., Mapping of quantitative trait loci affecting organ weights and blood variables in a broiler layer cross, British Poultry Science, vol.143, issue.4, pp.430-442, 2005.
DOI : 10.1073/pnas.90.23.10972

F. Minvielle, B. Kayang, M. Inoue-murayama, M. Miwa, A. Vignal et al., Microsatellite mapping of QTL affecting growth, feed consumption, egg production, tonic immobility and body temperature of Japanese quail, BMC Genomics, vol.6, issue.1, p.87, 2005.
DOI : 10.1186/1471-2164-6-87

M. Siwek, S. Cornelissen, M. Nieuwland, A. Buitenhuis, H. Bovenhuis et al., Detection of QTL for immune response to sheep red blood cells in laying hens, Animal Genetics, vol.80, issue.6, pp.422-428, 2003.
DOI : 10.1046/j.0268-9146.2003.01047.x

A. Buitenhuis, T. Rodenburg, Y. Van-hierden, M. Siwek, S. Cornelissen et al., Mapping quantitative trait loci affecting feather pecking behavior and stress response in laying hens, Poultry Science, vol.82, issue.8, pp.1215-1222, 2003.
DOI : 10.1093/ps/82.8.1215

D. Koning, D. Bovenhuis, H. Van-arendonk, and J. , On the detection of imprinted quantitative trait loci in experimental crosses of outbred species, Genetics, vol.161, pp.931-938, 2002.

C. Sandor and M. Georges, On the Detection of Imprinted Quantitative Trait Loci in Line Crosses: Effect of Linkage Disequilibrium, Genetics, vol.180, issue.2, pp.1167-1175, 2008.
DOI : 10.1534/genetics.108.092551

D. Barlow, R. Stöger, B. Herrmann, K. Saito, and N. Schweifer, The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus, Nature, vol.349, issue.6304, pp.84-87, 1991.
DOI : 10.1038/349084a0

M. Bartolomei, S. Zemel, and S. Tilghman, Parental imprinting of the mouse H19 gene, Nature, vol.351, issue.6322, pp.153-155, 1991.
DOI : 10.1038/351153a0

T. Dechiara and E. Robertson, Parental imprinting of the mouse insulin-like growth factor II gene, Cell, vol.64, issue.4, pp.849-859, 1991.
DOI : 10.1016/0092-8674(91)90513-X

C. Gregg, J. Zhang, B. Weissbourd, S. Luo, G. Schroth et al., High-Resolution Analysis of Parent-of-Origin Allelic Expression in the Mouse Brain, Science, vol.329, issue.5992, pp.643-648, 2010.
DOI : 10.1126/science.1190830

G. Kelsey and M. Bartolomei, Imprinted Genes ??? and the Number Is?, PLoS Genetics, vol.21, issue.3, p.1002601, 2012.
DOI : 10.1371/journal.pgen.1002601.g001

B. Deveale, D. Van-der-kooy, and T. Babak, Critical Evaluation of Imprinted Gene Expression by RNA???Seq: A New Perspective, PLoS Genetics, vol.373, issue.3, p.1002600, 2012.
DOI : 10.1371/journal.pgen.1002600.s008

O. Neill, M. Ingram, R. Vrana, P. Tilghman, and S. , Allelic expression of IGF2 in marsupials and birds, Dev Genes Evol, vol.210, pp.18-20, 2000.

S. Suzuki, G. Shaw, T. Kaneko-ishino, F. Ishino, and M. Renfree, Characterisation of marsupial PHLDA2 reveals eutherian specific acquisition of imprinting, BMC Evolutionary Biology, vol.7, issue.12, p.244, 2011.
DOI : 10.1186/1471-213X-7-53

J. Killian, C. Nolan, N. Stewart, B. Munday, N. Andersen et al., MonotremeIGF2 expression and ancestral origin of genomic imprinting, Journal of Experimental Zoology, vol.372, issue.2, pp.205-212, 2001.
DOI : 10.1002/jez.1070

M. Renfree, T. Hore, G. Shaw, J. Graves, and A. Pask, Evolution of Genomic Imprinting: Insights from Marsupials and Monotremes, Annual Review of Genomics and Human Genetics, vol.10, issue.1, pp.241-262, 2009.
DOI : 10.1146/annurev-genom-082908-150026

N. Giannoukakis, C. Deal, J. Paquette, C. Goodyer, and C. Polychronakos, Parental genomic imprinting of the human IGF2 gene, Nature Genetics, vol.19, issue.1, pp.98-101, 1993.
DOI : 10.1006/abio.1987.9999

L. Koski, E. Sasaki, R. Roberts, J. Gibson, and R. Etches, Monoalleleic transcription of the insulin-like growth factor-II gene (Igf2) in chick embryos, Molecular Reproduction and Development, vol.197, issue.3, pp.345-352, 2000.
DOI : 10.1002/1098-2795(200007)56:3<345::AID-MRD3>3.0.CO;2-1

C. Nolan, J. Killian, J. Petitte, and R. Jirtle, Imprint status of M6P/IGF2R and IGF2 in chickens, Development Genes and Evolution, vol.211, issue.4, pp.179-183, 2001.
DOI : 10.1007/s004270000132

G. Wang, Y. B. Deng, X. Li, C. Hu, X. Li et al., Insulin-like growth factor 2 as a candidate gene influencing growth and carcass traits and its bialleleic expression in chicken, Science in China Series C, vol.48, issue.2, pp.187-194, 2005.
DOI : 10.1360/03yc0035

T. Yokomine, A. Kuroiwa, K. Tanaka, M. Tsudzuki, Y. Matsuda et al., Sequence polymorphisms, allelic expression status and chromosome locations of the chicken <i>IGF2</i> and <i>MPR1</i> genes, Cytogenetic and Genome Research, vol.93, issue.1-2, pp.109-113, 2001.
DOI : 10.1159/000056960

T. Yokomine, H. Shirohzu, W. Purbowasito, A. Toyoda, H. Iwama et al., Structural and functional analysis of a 0.5-Mb chicken region orthologous to the imprinted mammalian Ascl2/Mash2-Igf2-H19 region, Genome Research, vol.15, issue.1, pp.154-165, 2005.
DOI : 10.1101/gr.2609605

S. Shin, J. Han, and K. Lee, Cloning of avian Delta-like 1 homolog gene: The biallelic expression of Delta-like 1 homolog in avian species, Poultry Science, vol.89, issue.5, pp.948-955, 2010.
DOI : 10.3382/ps.2009-00572

D. Colosi, D. Martin, K. Moré, and M. Lalande, Genomic organization and allelic expression of UBE3A in chicken, Gene, vol.383, pp.93-98, 2006.
DOI : 10.1016/j.gene.2006.07.019

D. Kitsberg, S. Selig, M. Brandeis, I. Simon, I. Keshet et al., Allele-specific replication timing of imprinted gene regions, Nature, vol.364, issue.6436, pp.459-463, 1993.
DOI : 10.1038/364459a0

U. Dünzinger, I. Nanda, M. Schmid, T. Haaf, and U. Zechner, Chicken orthologues of mammalian imprinted genes are clustered on macrochromosomes and replicate asynchronously, Trends in Genetics, vol.21, issue.9, pp.488-492, 2005.
DOI : 10.1016/j.tig.2005.07.004

U. Dünzinger, T. Haaf, and U. Zechner, Conserved synteny of mammalian imprinted genes in chicken, frog, and fish genomes, Cytogenetic and Genome Research, vol.117, issue.1-4, pp.78-85, 2007.
DOI : 10.1159/000103167

M. Bartolomei and A. Ferguson-smith, Mammalian genomic imprinting. Cold Spring Harbor Perspect Biol, p.2592, 2011.

B. Jin, Y. Li, and K. Robertson, DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer, pp.607-617, 2011.

R. Jurkowska, T. Jurkowski, and A. Jeltsch, Structure and Function of Mammalian DNA Methyltransferases, ChemBioChem, vol.10, issue.2, pp.206-222, 2011.
DOI : 10.1002/cbic.201000195

K. Hata, M. Okano, H. Lei, and E. Li, Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice, Development, vol.129, pp.1983-1993, 2002.

I. Suetake, F. Shinozaki, J. Miyagawa, H. Takeshima, and S. Tajima, DNMT3L Stimulates the DNA Methylation Activity of Dnmt3a and Dnmt3b through a Direct Interaction, Journal of Biological Chemistry, vol.279, issue.26, pp.27816-27823, 2004.
DOI : 10.1074/jbc.M400181200

D. Jia, R. Jurkowska, X. Zhang, A. Jeltsch, and X. Cheng, Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation, Nature, vol.54, issue.7159, pp.248-251, 2007.
DOI : 10.1038/nature06146

S. Ooi, C. Qiu, E. Bernstein, K. Li, D. Jia et al., DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA, Nature, vol.826, issue.7154, pp.3-714, 2007.
DOI : 10.1038/nature05987

B. Van-emburgh and K. Robertson, Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants, Nucleic Acids Research, vol.39, issue.12, pp.4984-5002, 2011.
DOI : 10.1093/nar/gkr116

S. Smallwood, S. Tomizawa, F. Krueger, N. Ruf, N. Carli et al., Dynamic CpG island methylation landscape in oocytes and preimplantation embryos, Nature Genetics, vol.129, issue.8, pp.811-814, 2011.
DOI : 10.1242/dev.061416

J. Weaver, G. Sarkisian, C. Krapp, J. Mager, M. Mann et al., Domain-Specific Response of Imprinted Genes to Reduced DNMT1, Molecular and Cellular Biology, vol.30, issue.16, pp.3916-3928, 2010.
DOI : 10.1128/MCB.01278-09

T. Yokomine, K. Hata, M. Tsudzuki, and H. Sasaki, Evolution of the vertebrate DNMT3 gene family: a possible link between existence of <i>DNMT3L</i> and genomic imprinting, Cytogenetic and Genome Research, vol.113, issue.1-4, pp.75-80, 2006.
DOI : 10.1159/000090817

S. Tajima, H. Tsuda, N. Wakabayashi, A. Asano, S. Mizuno et al., Isolation and Expression of a Chicken DNA Methyltransferase cDNA1, The Journal of Biochemistry, vol.117, issue.5, pp.1050-1057, 1995.
DOI : 10.1093/oxfordjournals.jbchem.a124805

D. Bourc-'his and C. Proudhon, Sexual dimorphism in parental imprint ontogeny and contribution to embryonic development, Mol Cell Endocrinol, vol.282, pp.87-94, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00531969

Q. Li, N. Li, X. Hu, J. Li, Z. Du et al., Genome-Wide Mapping of DNA Methylation in Chicken, PLoS ONE, vol.18, issue.5, p.19428, 2011.
DOI : 10.1371/journal.pone.0019428.s005

K. Delaval, J. Govin, F. Cerqueira, S. Rousseaux, S. Khochbin et al., Differential histone modifications mark mouse imprinting control regions during spermatogenesis, The EMBO Journal, vol.13, issue.3, pp.720-729, 2007.
DOI : 10.1038/sj.emboj.7601513

URL : https://hal.archives-ouvertes.fr/inserm-00176731

J. Kim and A. Ogura, Changes in allele-specific association of histone modifications at the imprinting control regions during mouse preimplantation development, genesis, vol.12, issue.9, pp.611-616, 2009.
DOI : 10.1002/dvg.20541

K. Mcewen and A. Ferguson-smith, Distinguishing epigenetic marks of developmental and imprinting regulation, Epigenetics & Chromatin, vol.3, issue.1, 2010.
DOI : 10.1186/1756-8935-3-2

F. Sleutels, R. Zwart, and D. Barlow, The non-coding Air RNA is required for silencing autosomal imprinted genes, Nature, vol.94, issue.6873, pp.810-813, 2002.
DOI : 10.1038/415810a

A. Lewis, K. Mitsuya, D. Umlauf, P. Smith, W. Dean et al., Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation, Nature Genetics, vol.122, issue.12
DOI : 10.1073/pnas.96.14.8064

J. Peters and C. Williamson, Control of Imprinting at the Gnas Cluster, Epigenetics, vol.2, issue.4, pp.207-213, 2007.
DOI : 10.4161/epi.2.4.5380

C. Williamson, S. Ball, C. Dawson, S. Mehta, C. Beechey et al., Uncoupling Antisense-Mediated Silencing and DNA Methylation in the Imprinted Gnas Cluster, PLoS Genetics, vol.2, issue.3, p.1001347, 2011.
DOI : 10.1371/journal.pgen.1001347.s011

S. Barbaux, G. Gascoin-lachambre, C. Buffat, P. Monnier, F. Mondon et al., A genome-wide approach reveals novel imprinted genes expressed in the human placenta, Epigenetics, vol.18, issue.9, pp.1079-1090, 2012.
DOI : 10.1093/nar/29.9.e45

URL : https://hal.archives-ouvertes.fr/hal-01000763

G. Kelsey, Epigenetics and the brain: Transcriptome sequencing reveals new depths to genomic imprinting, BioEssays, vol.465, issue.5, pp.362-367, 2011.
DOI : 10.1002/bies.201100004

W. Cooper and M. Constância, How genome-wide approaches can be used to unravel the remaining secrets of the imprintome, Briefings in Functional Genomics, vol.9, issue.4, pp.315-328, 2010.
DOI : 10.1093/bfgp/elq018

C. Faulk and D. Dolinoy, Timing is everything, Epigenetics, vol.20, issue.7, pp.791-797, 2011.
DOI : 10.4161/epi.6.7.16209

H. Jammes, C. Junien, and P. Chavatte-palmer, Epigenetic control of development and expression of quantitative traits. Reprod Fertil Develop, pp.64-74, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01018986

M. Szyf, P. Mcgowan, and M. Meaney, The social environment and the epigenome, Environmental and Molecular Mutagenesis, vol.97, issue.1, pp.46-60, 2008.
DOI : 10.1002/em.20357

T. Kisliouk and N. Meiri, promoter during postnatal thermotolerance acquisition, European Journal of Neuroscience, vol.15, issue.10, pp.1909-1922, 2009.
DOI : 10.1111/j.1460-9568.2009.06957.x

T. Kisliouk, M. Ziv, and N. Meiri, Epigenetic control of translation regulation: Alterations in histone H3 lysine 9 post-translation modifications are correlated with the expression of the translation initiation factor 2B (Eif2b5) during thermal control establishment, Developmental Neurobiology, vol.15, issue.Part 1, pp.100-113, 2010.
DOI : 10.1002/dneu.20763

T. Kisliouk, S. Yosefi, and N. Meiri, MiR-138 inhibits EZH2 methyltransferase expression and methylation of histone H3 at lysine???27, and affects thermotolerance acquisition, European Journal of Neuroscience, vol.42, issue.Pt 1, pp.224-235, 2011.
DOI : 10.1111/j.1460-9568.2010.07493.x

M. Yossifoff, T. Kisliouk, and N. Meiri, Dynamic changes in DNA methylation during thermal control establishment affect CREB binding to the brain-derived neurotrophic factor promoter, European Journal of Neuroscience, vol.79, issue.Pt 1, pp.2267-2277, 2008.
DOI : 10.1111/j.1460-9568.2008.06532.x

Z. Gou, R. Liu, G. Zhao, M. Zheng, P. Li et al., Epigenetic Modification of TLRs in Leukocytes Is Associated with Increased Susceptibility to Salmonella enteritidis in Chickens, PLoS ONE, vol.52, issue.3, p.33627, 2012.
DOI : 10.1371/journal.pone.0033627.t003

J. Luo, Y. Yu, S. Chang, F. Tian, H. Zhang et al., DNA Methylation Fluctuation Induced by Virus Infection Differs between MD-resistant and -susceptible Chickens, Frontiers in Genetics, vol.3, p.20
DOI : 10.3389/fgene.2012.00020

J. Luo, A. Mitra, F. Tian, S. Chang, H. Zhang et al., Histone Methylation Analysis and Pathway Predictions in Chickens after MDV Infection, PLoS ONE, vol.7, issue.7, p.41849, 2012.
DOI : 10.1371/journal.pone.0041849.s017

F. Yan, R. Angel, C. Ashwell, A. Mitchell, and M. Christman, Evaluation of the broiler's ability to adapt to an early moderate deficiency of phosphorus and calcium, Poultry Science, vol.84, issue.8, pp.1232-1241, 2005.
DOI : 10.1093/ps/84.8.1232

C. Ashwell and R. Angel, Nutritional genomics: a practical approach by early life conditioning with dietary phosphorus. R Bras Zootec, pp.268-278, 2010.

P. Xu, C. Denbow, N. Meiri, and D. Denbow, Fasting of 3-day-old chicks leads to changes in histone H3 methylation status, Physiology & Behavior, vol.105, issue.2, pp.276-282, 2012.
DOI : 10.1016/j.physbeh.2011.06.023

D. Ho, W. Reed, and W. Burggren, Egg yolk environment differentially influences physiological and morphological development of broiler and layer chicken embryos, Journal of Experimental Biology, vol.214, issue.4, pp.619-628, 2011.
DOI : 10.1242/jeb.046714

W. Reed and M. Clark, Beyond Maternal Effects in Birds: Responses of the Embryo to the Environment, Integrative and Comparative Biology, vol.51, issue.1, pp.73-80, 2011.
DOI : 10.1093/icb/icr032

D. Renaudeau, C. A. Yahav, S. , D. Basilio, V. Gourdine et al., Adaptation to hot climate and strategies to alleviate heat stress in livestock production, animal, vol.14, issue.05, pp.707-728, 2011.
DOI : 10.1016/j.jtherbio.2003.10.006

B. Tzschentke and D. Basta, Early development of neuronal hypothalamic thermosensitivity in birds: influence of epigenetic temperature adaptation, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.131, issue.4, pp.825-832, 2002.
DOI : 10.1016/S1095-6433(02)00020-X

D. Shinder, M. Ruzal, M. Giloh, S. Druyan, Y. Piestun et al., Improvement of cold resistance and performance of broilers by acute cold exposure during late embryogenesis, Poultry Science, vol.90, issue.3, pp.633-641, 2011.
DOI : 10.3382/ps.2010-01089

M. Nichelmann, J. Höchel, and B. Tzschentke, Biological rhythms in birds ??? development, insights and perspectives, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.124, issue.4, pp.429-437, 1999.
DOI : 10.1016/S1095-6433(99)00135-X

Y. Piestun, D. Shinder, M. Ruzal, O. Halevy, J. Brake et al., Thermal Manipulations During Broiler Embryogenesis: Effect on the Acquisition of Thermotolerance, Poultry Science, vol.87, issue.8, pp.1516-1525, 2008.
DOI : 10.3382/ps.2008-00030

I. Rozenboim, R. Huisinga, and O. Halevy, Effect of embryonic photostimulation on the posthatch growth of turkey poults, Poultry Science, vol.82, issue.7, pp.1181-1187, 2003.
DOI : 10.1093/ps/82.7.1181

I. Rozenboim, Y. Piestun, N. Mobarkey, M. Barak, A. Hoyzman et al., Monochromatic light stimuli during embryogenesis enhance embryo development and posthatch growth, Poultry Science, vol.83, issue.8, pp.1413-1419, 2004.
DOI : 10.1093/ps/83.8.1413

O. Halevy, Y. Piestun, I. Rozenboim, and Z. Yablonka-reuveni, In ovo exposure to monochromatic green light promotes skeletal muscle cell proliferation and affects myofiber growth in posthatch chicks, AJP: Regulatory, Integrative and Comparative Physiology, vol.290, issue.4, pp.1062-1070, 2006.
DOI : 10.1152/ajpregu.00378.2005

L. Zhang, H. Zhang, X. Qiao, H. Yue, S. Wu et al., Effect of monochromatic light stimuli during embryogenesis on muscular growth, chemical composition, and meat quality of breast muscle in male broilers, Poultry Science, vol.91, issue.4, pp.1026-1031, 2012.
DOI : 10.3382/ps.2011-01899

A. Gabory, L. Attig, and C. Junien, Epigenetic mechanisms involved in developmental nutritional programming, World Journal of Diabetes, vol.2, issue.10, pp.164-175, 2011.
DOI : 10.4239/wjd.v2.i10.164

URL : https://hal.archives-ouvertes.fr/hal-01019812

B. Heijmans, E. Tobi, A. Stein, H. Putter, G. Blauw et al., Persistent epigenetic differences associated with prenatal exposure to famine in humans, Proceedings of the National Academy of Sciences, vol.105, issue.44, pp.17046-17049, 2008.
DOI : 10.1073/pnas.0806560105

D. Dolinoy, The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome, Nutrition Reviews, vol.66, pp.7-11, 2008.
DOI : 10.1111/j.1753-4887.2008.00056.x

D. Dolinoy, C. Weinhouse, T. Jones, L. Rozek, and R. Jirtle, metastable epiallele, Epigenetics, vol.35, issue.7, pp.637-644, 2010.
DOI : 10.1016/j.nbd.2005.11.001

K. Rao, J. Xie, X. Yang, L. Chen, R. Grossmann et al., Maternal low-protein diet programmes offspring growth in association with alterations in yolk leptin deposition and gene expression in yolk-sac membrane, hypothalamus and muscle of developing Langshan chicken embryos, British Journal of Nutrition, vol.86, issue.06
DOI : 10.1111/j.1463-1326.2008.00852.x

M. Naguib and D. Gil, Transgenerational effects on body size caused by early developmental stress in zebra finches, Biology Letters, vol.1, issue.1, pp.95-97, 2005.
DOI : 10.1098/rsbl.2004.0277

M. Naguib, A. Nemitz, and D. Gil, Maternal developmental stress reduces reproductive success of female offspring in zebra finches, Proceedings of the Royal Society B: Biological Sciences, vol.221, issue.1, pp.1901-1905, 2006.
DOI : 10.1006/jtbi.2003.3183

D. Hasselquist and J. Nilsson, Maternal transfer of antibodies in vertebrates: trans-generational effects on offspring immunity, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.160, issue.1, pp.51-60, 2009.
DOI : 10.1016/j.exppara.2007.12.018

K. Navara and S. Pinson, Yolk and albumen corticosterone concentrations in eggs laid by white versus brown caged laying hens, Poultry Science, vol.89, issue.7, pp.1509-1513, 2010.
DOI : 10.3382/ps.2009-00416

V. Goerlich, D. Nätt, M. Elfwing, B. Macdonald, and P. Jensen, Transgenerational effects of early experience on behavioral, hormonal and gene expression responses to acute stress in the precocial chicken, Hormones and Behavior, vol.61, issue.5, pp.711-718, 2012.
DOI : 10.1016/j.yhbeh.2012.03.006

D. Nätt, C. Rubin, D. Wright, M. Johnsson, J. Beltéky et al., Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens, BMC Genomics, vol.13, issue.1, p.59, 2012.
DOI : 10.1016/S0168-9525(00)02024-2

D. Nätt, N. Lindqvist, H. Stranneheim, J. Lundeberg, P. Torjesen et al., Inheritance of Acquired Behaviour Adaptations and Brain Gene Expression in Chickens, PLoS ONE, vol.111, issue.9, p.6405, 2009.
DOI : 10.1371/journal.pone.0006405.t003

C. Lindqvist, A. Janczak, D. Nätt, I. Baranowska, N. Lindqvist et al., Transmission of Stress-Induced Learning Impairment and Associated Brain Gene Expression from Parents to Offspring in Chickens, PLoS ONE, vol.135, issue.4, p.364, 2007.
DOI : 10.1371/journal.pone.0000364.t004

C. Houdelier, S. Lumineau, A. Bertin, F. Guibert, D. Margerie et al., Development of Fearfulness in Birds: Genetic Factors Modulate Non-Genetic Maternal Influences, PLoS ONE, vol.6, issue.1, p.14604, 2011.
DOI : 10.1371/journal.pone.0014604.t003

URL : https://hal.archives-ouvertes.fr/hal-01022088

F. Guibert, M. Richard-yris, S. Lumineau, K. Kotrschal, A. Bertin et al., Unpredictable mild stressors on laying females influence the composition of Japanese quail eggs and offspring's phenotype, Applied Animal Behaviour Science, vol.132, issue.1-2, pp.51-60, 2011.
DOI : 10.1016/j.applanim.2011.03.012

F. Johannes, E. Porcher, F. Teixeira, V. Saliba-colombani, M. Simon et al., Assessing the Impact of Transgenerational Epigenetic Variation on Complex Traits, PLoS Genetics, vol.270, issue.6, p.1000530, 2009.
DOI : 10.1371/journal.pgen.1000530.s007

URL : https://hal.archives-ouvertes.fr/hal-01193366

J. Reinders, B. Wulff, M. Mirouze, M. -. Ordonez, A. Dapp et al., Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes, Genes & Development, vol.23, issue.8, pp.939-950, 2009.
DOI : 10.1101/gad.524609

H. Cedar and Y. Bergman, Programming of DNA Methylation Patterns, Annual Review of Biochemistry, vol.81, issue.1, pp.97-117, 2012.
DOI : 10.1146/annurev-biochem-052610-091920

J. Law and S. Jacobsen, Establishing, maintaining and modifying DNA methylation patterns in plants and animals, Nature Reviews Genetics, vol.28, issue.3, pp.204-220, 2010.
DOI : 10.1038/nrg2719

E. Marczylo, A. Amoako, J. Konje, T. Gant, and T. Marczylo, Smoking induces differential miRNA expression in human spermatozoa: A potential transgenerational epigenetic concern?, Epigenetics, vol.36, issue.5, pp.432-439, 2012.
DOI : 10.4161/epi.19794

M. Skinner, Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability, Epigenetics, vol.6, pp.838-842, 2011.

J. Curley, R. Mashoodh, and F. Champagne, Epigenetics and the origins of paternal effects, Hormones and Behavior, vol.59, issue.3, pp.306-314, 2011.
DOI : 10.1016/j.yhbeh.2010.06.018

S. Ng, R. Lin, D. Laybutt, R. Barres, J. Owens et al., Chronic high-fat diet in fathers programs ??-cell dysfunction in female rat offspring, Nature, vol.28, issue.7318, pp.963-966, 2010.
DOI : 10.1038/nature09491

B. Carone, L. Fauquier, N. Habib, J. Shea, C. Hart et al., Paternally Induced Transgenerational Environmental Reprogramming of Metabolic Gene Expression in Mammals, Cell, vol.143, issue.7, pp.1084-1096, 2010.
DOI : 10.1016/j.cell.2010.12.008

M. Pembrey, Male-line transgenerational responses in humans, Human Fertility, vol.9, issue.2, pp.268-271, 2010.
DOI : 10.3109/14647273.2010.524721

G. Kaati, L. Bygren, M. Pembrey, and M. Sjöström, Transgenerational response to nutrition, early life circumstances and longevity, European Journal of Human Genetics, vol.6, issue.7, pp.784-790, 2007.
DOI : 10.1038/sj.ejhg.5201832

M. Zeybel, T. Hardy, Y. Wong, J. Mathers, C. Fox et al., Multigenerational epigenetic adaptation of the hepatic wound-healing response, Nature Medicine, vol.460, issue.9, pp.1369-1377, 2012.
DOI : 10.1126/science.284.5411.143

M. Manikkam, C. Guerrero-bosagna, R. Tracey, M. Haque, and M. Skinner, Transgenerational Actions of Environmental Compounds on Reproductive Disease and Identification of Epigenetic Biomarkers of Ancestral Exposures, PLoS ONE, vol.23, issue.2, p.31901, 2012.
DOI : 10.1371/journal.pone.0031901.s009

J. Wolstenholme, M. Edwards, S. Shetty, J. Gatewood, J. Taylor et al., Gestational Exposure to Bisphenol A Produces Transgenerational Changes in Behaviors and Gene Expression, Endocrinology, vol.153, issue.8, pp.3828-3838, 2012.
DOI : 10.1210/en.2012-1195

G. Burdge, S. Hoile, T. Uller, N. Thomas, P. Gluckman et al., Progressive, Transgenerational Changes in Offspring Phenotype and Epigenotype following Nutritional Transition, PLoS ONE, vol.100, issue.1, p.28282, 2011.
DOI : 10.1371/journal.pone.0028282.t003

M. Anway, A. Cupp, M. Uzumcu, and M. Skinner, Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility, Science, vol.308, issue.5727, pp.1466-1469, 2005.
DOI : 10.1126/science.1108190

H. Chang, M. Anway, S. Rekow, and M. Skinner, Transgenerational Epigenetic Imprinting of the Male Germline by Endocrine Disruptor Exposure during Gonadal Sex Determination, Endocrinology, vol.147, issue.12, pp.5524-5541, 2006.
DOI : 10.1210/en.2006-0987

C. Guerrero-bosagna, M. Settles, B. Lucker, and M. Skinner, Epigenetic Transgenerational Actions of Vinclozolin on Promoter Regions of the Sperm Epigenome, PLoS ONE, vol.5, issue.9, p.13100, 2010.
DOI : 10.1371/journal.pone.0013100.s005

M. Skinner, M. Mohan, M. Haque, B. Zhang, and M. Savenkova, Epigenetic transgenerational inheritance of somatic transcriptomes and epigenetic control regions, Genome Biology, vol.13, issue.10, p.91, 2012.
DOI : 10.1186/gb-2012-13-10-r91

P. Monaghan, Early growth conditions, phenotypic development and environmental change, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.73, issue.1, pp.1635-1645, 2008.
DOI : 10.1016/j.biopsycho.2006.01.009

S. Leeson, Future considerations in poultry nutrition, Poultry Science, vol.91, issue.6, pp.1281-1285, 2012.
DOI : 10.3382/ps.2012-02373

E. Danchin, A. Charmantier, F. Champagne, A. Mesoudi, B. Pujol et al., Beyond DNA: integrating inclusive inheritance into an extended theory of evolution, Nature Reviews Genetics, vol.439, issue.7, pp.475-486, 2011.
DOI : 10.1038/nrg3028

Y. Liu, Like father like son. A fresh review of the inheritance of acquired characteristics, EMBO reports, vol.12, issue.9, pp.798-803, 2007.
DOI : 10.1128/MCB.23.15.5293-5300.2003

A. Petronis, Epigenetics as a unifying principle in the aetiology of complex traits and diseases, Nature, vol.462, issue.7299, pp.721-727, 2010.
DOI : 10.1038/nature09230

R. Furrow, F. Christiansen, and M. Feldman, Environment-Sensitive Epigenetics and the Heritability of Complex Diseases, Genetics, vol.189, issue.4, pp.1377-1387, 2011.
DOI : 10.1534/genetics.111.131912

F. Johannes and M. Colomé-tatché, Quantitative Epigenetics Through Epigenomic Perturbation of Isogenic Lines, Genetics, vol.188, issue.1, pp.215-227, 2011.
DOI : 10.1534/genetics.111.127118

O. Tal, E. Kisdi, and E. Jablonka, Epigenetic Contribution to Covariance Between Relatives, Genetics, vol.184, issue.4, pp.1037-1050, 2010.
DOI : 10.1534/genetics.109.112466

M. Slatkin, Epigenetic Inheritance and the Missing Heritability Problem, Genetics, vol.182, issue.3, pp.845-850, 2009.
DOI : 10.1534/genetics.109.102798

A. Feinberg and R. Irizarry, Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease, Proceedings of the National Academy of Sciences, vol.107, issue.suppl_1, pp.1757-1764, 2009.
DOI : 10.1073/pnas.0906183107

J. Fulton, Genomic selection for poultry breeding. Anim Front, pp.30-36, 2012.
DOI : 10.2527/af.2011-0028

R. Jirtle and M. Skinner, Environmental epigenomics and disease susceptibility, Nature Reviews Genetics, vol.403, issue.4, pp.253-262, 2007.
DOI : 10.1038/nrg2045

S. Feng, S. Jacobsen, and W. Reik, Epigenetic Reprogramming in Plant and Animal Development, Science, vol.330, issue.6004, pp.622-627, 2010.
DOI : 10.1126/science.1190614

B. Heijmans, E. Tobi, L. Lumey, and P. Slagboom, The epigenome: Archive of the prenatal environment, Epigenetics, vol.4, issue.8, pp.526-531, 2009.
DOI : 10.4161/epi.4.8.10265

A. Gabory, L. Attig, and C. Junien, Sexual dimorphism in environmental epigenetic programming, Molecular and Cellular Endocrinology, vol.304, issue.1-2, pp.8-18, 2009.
DOI : 10.1016/j.mce.2009.02.015

URL : https://hal.archives-ouvertes.fr/hal-00499121

. Frésard, Cite this article as Epigenetics and phenotypic variability: some interesting insights from birds, Genetics Selection Evolution, p.4516, 2013.