A. Andrieux, P. Salin, and A. Schweitzer, Microtubule Stabilizer Ameliorates Synaptic Function and Behavior in a Mouse Model for Schizophrenia, Biological Psychiatry, vol.60, issue.11, pp.1224-1230, 2006.
DOI : 10.1016/j.biopsych.2006.03.048

URL : https://hal.archives-ouvertes.fr/inserm-00380045

A. Andrieux, P. A. Salin, and M. Vernet, The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders, Genes & Development, vol.16, issue.18, pp.2350-2364, 2002.
DOI : 10.1101/gad.223302

D. M. Barten, P. Fanara, and C. Andorfer, Hyperdynamic Microtubules, Cognitive Deficits, and Pathology Are Improved in Tau Transgenic Mice with Low Doses of the Microtubule-Stabilizing Agent BMS-241027, Journal of Neuroscience, vol.32, issue.21, pp.7137-7145, 2012.
DOI : 10.1523/JNEUROSCI.0188-12.2012

M. Begou, P. Brun, J. B. Bertrand, D. Job, A. Schweitzer et al., Post-pubertal emergence of alterations in locomotor activity in stop null mice, Synapse, vol.177, issue.9, pp.689-697, 2007.
DOI : 10.1002/syn.20409

URL : https://hal.archives-ouvertes.fr/inserm-00379954

S. Benmansour, W. A. Owens, M. Cecchi, D. A. Morilak, and A. Frazer, Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of this transporter, J Neurosci, vol.22, pp.6766-6772, 2002.

M. A. Benson, R. V. Sillitoe, and D. J. Blake, Schizophrenia genetics: dysbindin under the microscope, Trends in Neurosciences, vol.27, issue.9, pp.516-519, 2004.
DOI : 10.1016/j.tins.2004.06.004

M. Bianchi, A. J. Shah, K. C. Fone, A. R. Atkins, L. A. Dawson et al., Fluoxetine administration modulates the cytoskeletal microtubular system in the rat hippocampus, Synapse, vol.4, issue.4, pp.359-364, 2009.
DOI : 10.1002/syn.20614

P. Bianchi, E. Ciani, and S. Guidi, Early Pharmacotherapy Restores Neurogenesis and Cognitive Performance in the Ts65Dn Mouse Model for Down Syndrome, Journal of Neuroscience, vol.30, issue.26, pp.8769-8779, 2010.
DOI : 10.1523/JNEUROSCI.0534-10.2010

D. Blackwood, B. Pickard, P. Thomson, K. Evans, D. Porteous et al., Are some genetic risk factors common to schizophrenia, bipolar disorder and depression? evidence fromDISC1, GRIK4 andNRG1, Neurotoxicity Research, vol.41, issue.2, pp.73-83, 2007.
DOI : 10.1007/BF03033484

P. Blier and C. De-montigny, Current advances and trends in the treatment of depression, Trends in Pharmacological Sciences, vol.15, issue.7, pp.220-226, 1994.
DOI : 10.1016/0165-6147(94)90315-8

C. Bouvrais-veret, S. Weiss, A. Andrieux, A. Schweitzer, J. M. Mcintosh et al., Sustained increase of alpha7 nicotinic receptors and choline-induced improvement of learning deficit in STOP knock-out mice, Neuropharmacology, vol.52, issue.8, pp.1691-1700, 2007.
DOI : 10.1016/j.neuropharm.2007.03.015

URL : https://hal.archives-ouvertes.fr/inserm-00379958

C. Bouvrais-veret, S. Weiss, N. Hanoun, A. Andrieux, A. Schweitzer et al., Microtubule-associated STOP protein deletion triggers restricted changes in dopaminergic neurotransmission, Journal of Neurochemistry, vol.82, issue.0, pp.745-756, 2008.
DOI : 10.1073/pnas.97.14.7673

URL : https://hal.archives-ouvertes.fr/inserm-00375628

P. Brun, M. Begou, and A. Andrieux, Dopaminergic transmission in STOP null mice, Journal of Neurochemistry, vol.65, issue.1, pp.63-73, 2005.
DOI : 10.1016/0165-0173(90)90015-G

URL : https://hal.archives-ouvertes.fr/inserm-00380189

K. R. Brunden, B. Zhang, and J. Carroll, Epothilone D Improves Microtubule Density, Axonal Integrity, and Cognition in a Transgenic Mouse Model of Tauopathy, Journal of Neuroscience, vol.30, issue.41, pp.13861-13866, 2010.
DOI : 10.1523/JNEUROSCI.3059-10.2010

J. E. Chubb, N. J. Bradshaw, D. C. Soares, D. J. Porteous, and J. K. Millar, The DISC locus in psychiatric illness, Molecular Psychiatry, vol.72, issue.1, pp.36-64, 2008.
DOI : 10.1016/j.cell.2007.07.010

D. Delotterie, G. Ruiz, J. Brocard, A. Schweitzer, C. Roucard et al., Chronic administration of atypical antipsychotics improves behavioral and synaptic defects of STOP null mice, Psychopharmacology, vol.84, issue.1, pp.131-141, 2010.
DOI : 10.1007/s00213-009-1712-3

URL : https://hal.archives-ouvertes.fr/inserm-00447474

K. Domschke, B. Lawford, and R. Young, Dysbindin (DTNBP1) ??? A role in psychotic depression?, Journal of Psychiatric Research, vol.45, issue.5, pp.588-595, 2011.
DOI : 10.1016/j.jpsychires.2010.09.014

W. W. Eaton, S. S. Martins, G. Nestadt, O. J. Bienvenu, D. Clarke et al., The Burden of Mental Disorders, Epidemiologic Reviews, vol.30, issue.1, pp.1-14, 2008.
DOI : 10.1093/epirev/mxn011

S. Farley, S. Dumas, S. Mestikawy, and B. Giros, Increased expression of the Vesicular Glutamate Transporter-1 (VGLUT1) in the prefrontal cortex correlates with differential vulnerability to chronic stress in various mouse strains: Effects of fluoxetine and MK-801, Neuropharmacology, vol.62, issue.1, pp.503-517, 2012.
DOI : 10.1016/j.neuropharm.2011.09.010

V. Fournet, M. Jany, and V. Fabre, The deletion of the microtubule-associated STOP protein affects the serotonergic mouse brain network, Journal of Neurochemistry, vol.12, issue.Suppl, pp.1579-1594, 2010.
DOI : 10.1111/j.1471-4159.2010.07064.x

URL : https://hal.archives-ouvertes.fr/inserm-00566974

V. Fournet, A. Schweitzer, C. Chevarin, J. C. Deloulme, M. Hamon et al., The deletion of STOP/MAP6 protein in mice triggers highly altered mood and impaired cognitive performances, Journal of Neurochemistry, vol.193, issue.1, pp.99-114, 2012.
DOI : 10.1111/j.1471-4159.2011.07615.x

URL : https://hal.archives-ouvertes.fr/inserm-00734692

R. L. Fradley, G. F. O-'meara, R. J. Newman, A. Andrieux, D. Job et al., STOP knockout and NMDA NR1 hypomorphic mice exhibit deficits in sensorimotor gating, Behavioural Brain Research, vol.163, issue.2, pp.257-264, 2005.
DOI : 10.1016/j.bbr.2005.05.012

URL : https://hal.archives-ouvertes.fr/inserm-00380197

R. Gallassi, D. Sarro, R. Morreale, A. Amore, and M. , Memory impairment in patients with late-onset major depression: The effect of antidepressant therapy, Journal of Affective Disorders, vol.91, issue.2-3, pp.243-250, 2006.
DOI : 10.1016/j.jad.2006.01.018

J. Gardiner, R. Overall, and J. Marc, The microtubule cytoskeleton acts as a key downstream effector of neurotransmitter signaling, Synapse, vol.37, issue.Suppl, pp.249-256, 2011.
DOI : 10.1002/syn.20841

J. P. Herman, H. Figueiredo, N. K. Mueller, Y. Ulrich-lai, M. M. Ostrander et al., Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo???pituitary???adrenocortical responsiveness, Frontiers in Neuroendocrinology, vol.24, issue.3, pp.151-180, 2003.
DOI : 10.1016/j.yfrne.2003.07.001

K. Hirano, T. Seki, N. Sakai, Y. Kato, H. Hashimoto et al., Effects of continuous administration of paroxetine on ligand binding site and expression of serotonin transporter protein in mouse brain, Brain Research, vol.1053, issue.1-2, pp.154-161, 2005.
DOI : 10.1016/j.brainres.2005.06.038

S. A. Horsfield, R. B. Rosse, V. Tomasino, B. L. Schwartz, J. Mastropaolo et al., Fluoxetine's Effects on Cognitive Performance in Patients with Traumatic Brain Injury, The International Journal of Psychiatry in Medicine, vol.25, issue.4, pp.337-344, 2002.
DOI : 10.2190/KQ48-XT0L-2H14-5UMV

K. Ishizuka, M. Paek, A. Kamiya, and A. Sawa, A Review of Disrupted-in-Schizophrenia-1 (disc1): Neurodevelopment, Cognition, and Mental Conditions, Biological Psychiatry, vol.59, issue.12, pp.1189-1197, 2006.
DOI : 10.1016/j.biopsych.2006.03.065

K. Kajitani, M. Thorne, M. Samson, and G. S. Robertson, Nitric Oxide Synthase Mediates the Ability of Darbepoetin Alfa to Improve the Cognitive Performance of STOP Null Mice, Neuropsychopharmacology, 2010.

A. Kamiya, T. Tomoda, and J. Chang, DISC1-NDEL1/NUDEL protein interaction, an essential component for neurite outgrowth, is modulated by genetic variations of DISC1, Human Molecular Genetics, vol.15, issue.22, pp.3313-3323, 2006.
DOI : 10.1093/hmg/ddl407

R. S. Keefe, R. M. Bilder, and S. M. Davis, Neurocognitive Effects of Antipsychotic Medications in Patients With Chronic Schizophrenia in the CATIE Trial, Archives of General Psychiatry, vol.64, issue.6, pp.633-647, 2007.
DOI : 10.1001/archpsyc.64.6.633

H. Kilpinen, T. Ylisaukko-oja, and W. Hennah, Association of DISC1 with autism and Asperger syndrome, Molecular Psychiatry, vol.18, issue.2, pp.187-196, 2008.
DOI : 10.1086/382137

A. Kolman, Epothilone D (Kosan/Roche), Curr Opin Investig Drugs, vol.5, pp.657-667, 2004.

L. Lanfumey, R. Mongeau, C. Cohen-salmon, and M. Hamon, Corticosteroid???serotonin interactions in the neurobiological mechanisms of stress-related disorders, Neuroscience & Biobehavioral Reviews, vol.32, issue.6, pp.1174-1184, 2008.
DOI : 10.1016/j.neubiorev.2008.04.006

Y. Levkovitz, R. Caftori, A. Avital, and G. Richter-levin, The SSRIs drug Fluoxetine, but not the noradrenergic tricyclic drug Desipramine, improves memory performance during acute major depression, Brain Research Bulletin, vol.58, issue.4, pp.345-350, 2002.
DOI : 10.1016/S0361-9230(01)00780-8

W. L. Li, H. H. Cai, B. Wang, L. Chen, Q. G. Zhou et al., Chronic fluoxetine treatment improves ischemia-induced spatial cognitive deficits through increasing hippocampal neurogenesis after stroke, Journal of Neuroscience Research, vol.101, issue.1, pp.112-122, 2009.
DOI : 10.1002/jnr.21829

A. D. Lopez, C. D. Mathers, M. Ezzati, D. T. Jamison, and C. J. Murray, Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data, The Lancet, vol.367, issue.9524, pp.1747-1757, 2006.
DOI : 10.1016/S0140-6736(06)68770-9

W. Maier, Common risk genes for affective and schizophrenic psychoses, European Archives of Psychiatry and Clinical Neuroscience, vol.63, issue.4, pp.37-40, 2008.
DOI : 10.1007/s00406-008-2008-z

C. D. Mathers and D. Loncar, Projections of Global Mortality and Burden of Disease from 2002 to 2030, PLoS Medicine, vol.52, issue.11, p.442, 2002.
DOI : 10.1371/journal.pmed.0030442.st007

Y. Matsuoka, Y. Jouroukhin, and A. J. Gray, A Neuronal Microtubule-Interacting Agent, NAPVSIPQ, Reduces Tau Pathology and Enhances Cognitive Function in a Mouse Model of Alzheimer's Disease, Journal of Pharmacology and Experimental Therapeutics, vol.325, issue.1, pp.146-153, 2008.
DOI : 10.1124/jpet.107.130526

B. S. Mcewen, Mood disorders and allostatic load, Biological Psychiatry, vol.54, issue.3, pp.200-207, 2003.
DOI : 10.1016/S0006-3223(03)00177-X

A. Merenlender-wagner, R. Pikman, E. Giladi, A. Andrieux, and I. Gozes, NAP (davunetide) enhances cognitive behavior in the STOP heterozygous mouse???A microtubule-deficient model of schizophrenia, Peptides, vol.31, issue.7, pp.1368-1373, 2010.
DOI : 10.1016/j.peptides.2010.04.011

URL : https://hal.archives-ouvertes.fr/inserm-00498115

M. J. Millan, A. Dekeyne, M. Papp, L. Rochelle, C. D. Macsweeny et al., S33005, a novel ligand at both serotonin and norepinephrine transporters: II. Behavioral profile in comparison with venlafaxine, reboxetine, citalopram, and clomipramine, J Pharmacol Exp Ther, vol.298, pp.581-591, 2001.

J. K. Millar, J. C. Wilson-annan, and S. Anderson, Disruption of two novel genes by a translocation co-segregating with schizophrenia, Human Molecular Genetics, vol.9, issue.9, pp.1415-1423, 2000.
DOI : 10.1093/hmg/9.9.1415

J. Morris, G. Kandpal, L. Ma, and C. Austin, DISC1 (Disrupted-In-Schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation, Human Molecular Genetics, vol.12, issue.13, pp.1591-1608, 2003.
DOI : 10.1093/hmg/ddg162

J. P. Mostert, M. W. Koch, M. Heerings, D. J. Heersema, D. Keyser et al., Therapeutic Potential of Fluoxetine in Neurological Disorders, CNS Neuroscience & Therapeutics, vol.4, issue.2, pp.153-164, 2008.
DOI : 10.1016/j.neulet.2004.10.009

A. Mowla, M. Mosavinasab, and A. Pani, Does Fluoxetine Have Any Effect on the Cognition of Patients With Mild Cognitive Impairment?, Journal of Clinical Psychopharmacology, vol.27, issue.1, pp.67-70, 2007.
DOI : 10.1097/JCP.0b013e31802e0002

O. Mutlu, G. Ulak, A. Laugeray, and C. Belzung, Effects of neuronal and inducible NOS inhibitor 1-[2-(trifluoromethyl) phenyl] imidazole (TRIM) in unpredictable chronic mild stress procedure in mice, Pharmacology Biochemistry and Behavior, vol.92, issue.1, pp.82-87, 2009.
DOI : 10.1016/j.pbb.2008.10.013

J. H. Nettles, H. Li, B. Cornett, J. M. Krahn, J. P. Snyder et al., The Binding Mode of Epothilone A on ??,??-Tubulin by Electron Crystallography, Science, vol.305, issue.5685, pp.866-869, 2004.
DOI : 10.1126/science.1099190

N. Norton, H. J. Williams, and M. J. Owen, An update on the genetics of schizophrenia, Current Opinion in Psychiatry, vol.19, issue.2, pp.158-164, 2006.
DOI : 10.1097/01.yco.0000214341.52249.59

G. Pineyro and P. Blier, Autoregulation of serotonin neurons: role in antidepressant drug action, Pharmacol Rev, vol.51, pp.533-591, 1999.

R. D. Porsolt, A. Bertin, N. Blavet, M. Deniel, and M. Jalfre, Immobility induced by forced swimming in rats: Effects of agents which modify central catecholamine and serotonin activity, European Journal of Pharmacology, vol.57, issue.2-3, pp.201-210, 1979.
DOI : 10.1016/0014-2999(79)90366-2

K. J. Powell, S. E. Hori, R. Leslie, A. Andrieux, H. Schellinck et al., Cognitive impairments in the STOP null mouse model of schizophrenia., Behavioral Neuroscience, vol.121, issue.5, pp.826-835, 2007.
DOI : 10.1037/0735-7044.121.5.826

URL : https://hal.archives-ouvertes.fr/inserm-00380034

P. Seeman, J. Schwarz, and J. Chen, Psychosis pathways converge via D2High dopamine receptors, Synapse, vol.98, issue.4, pp.319-346, 2006.
DOI : 10.1002/syn.20303

L. Song, W. Che, W. Min-wei, Y. Murakami, and K. Matsumoto, Impairment of the spatial learning and memory induced by learned helplessness and chronic mild stress, Pharmacology Biochemistry and Behavior, vol.83, issue.2, pp.186-193, 2006.
DOI : 10.1016/j.pbb.2006.01.004

R. E. Straub, Y. Jiang, and C. J. Maclean, Genetic Variation in the 6p22.3 Gene DTNBP1, the Human Ortholog of the Mouse Dysbindin Gene, Is Associated with Schizophrenia, The American Journal of Human Genetics, vol.71, issue.2, pp.337-348, 2002.
DOI : 10.1086/341750

K. Talbot, D. S. Cho, and W. Y. Ong, Dysbindin-1 is a synaptic and microtubular protein that binds brain snapin, Human Molecular Genetics, vol.15, issue.20, pp.3041-3054, 2006.
DOI : 10.1093/hmg/ddl246

S. Taya, T. Shinoda, and D. Tsuboi, DISC1 Regulates the Transport of the NUDEL/LIS1/14-3-3?? Complex through Kinesin-1, Journal of Neuroscience, vol.27, issue.1, pp.15-26, 2007.
DOI : 10.1523/JNEUROSCI.3826-06.2006

I. Yalcin, C. Belzung, and A. Surget, Mouse strain differences in the unpredictable chronic mild stress: a four-antidepressant survey, Behavioural Brain Research, vol.193, issue.1, pp.140-143, 2008.
DOI : 10.1016/j.bbr.2008.04.021

B. Zhang, J. Carroll, and J. Q. Trojanowski, The Microtubule-Stabilizing Agent, Epothilone D, Reduces Axonal Dysfunction, Neurotoxicity, Cognitive Deficits, and Alzheimer-Like Pathology in an Interventional Study with Aged Tau Transgenic Mice, Journal of Neuroscience, vol.32, issue.11, 2012.
DOI : 10.1523/JNEUROSCI.4922-11.2012

A. Andrieux, P. A. Salin, and M. Vernet, The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders, Genes & Development, vol.16, issue.18, pp.2350-2364, 2002.
DOI : 10.1101/gad.223302

G. Curzon, E. L. Gibson, and A. O. Oluyomi, Appetite suppression by commonly used drugs depends on 5-HT receptors but not on 5-HT availability, Trends in Pharmacological Sciences, vol.18, issue.1, pp.21-25, 1997.
DOI : 10.1016/S0165-6147(96)01003-6

V. Fournet, M. Jany, and V. Fabre, The deletion of the microtubule-associated STOP protein affects the serotonergic mouse brain network, Journal of Neurochemistry, vol.12, issue.Suppl, pp.1579-1594, 2010.
DOI : 10.1111/j.1471-4159.2010.07064.x

URL : https://hal.archives-ouvertes.fr/inserm-00566974

V. Fournet, A. Schweitzer, C. Chevarin, J. C. Deloulme, M. Hamon et al., The deletion of STOP/MAP6 protein in mice triggers highly altered mood and impaired cognitive performances, Journal of Neurochemistry, vol.193, issue.1, pp.99-114, 2012.
DOI : 10.1111/j.1471-4159.2011.07615.x

URL : https://hal.archives-ouvertes.fr/inserm-00734692

K. B. Franklin and G. Paxinos, The mouse brain in stereotaxic coordinates, 1997.

A. Frazer and S. Benmansour, Delayed pharmacological effects of antidepressants, Molecular Psychiatry, vol.7, issue.s1, pp.23-28, 2002.
DOI : 10.1038/sj.mp.4001015

J. Mcguirk, R. Muscat, and P. Willner, Effects of chronically administered fluoxetine and fenfluramine on food intake, body weight and the behavioural satiety sequence, Psychopharmacology, vol.64, issue.suppl, pp.401-407, 1992.
DOI : 10.1007/BF02245426

M. J. Millan, A. Dekeyne, M. Papp, L. Rochelle, C. D. Macsweeny et al., S33005, a novel ligand at both serotonin and norepinephrine transporters: II. Behavioral profile in comparison with venlafaxine, reboxetine, citalopram, and clomipramine, J Pharmacol Exp Ther, vol.298, pp.581-591, 2001.

G. A. Ordway, C. A. Stockmeier, G. W. Cason, and V. Klimek, Pharmacology and distribution of norepinephrine transporters in the human locus coeruleus and raphe nuclei, J Neurosci, vol.17, pp.1710-1719, 1997.

L. Oruc, G. Verheyen, I. Furac, M. Jakovlejevic, S. Ivezic et al., Association analysis of the 5-HT2C receptor and 5-HT transporter genes in bipolar disorder, Am J Medical Genetics, vol.74, pp.504-506, 1997.

R. D. Porsolt, A. Bertin, N. Blavet, M. Deniel, and M. Jalfre, Immobility induced by forced swimming in rats: Effects of agents which modify central catecholamine and serotonin activity, European Journal of Pharmacology, vol.57, issue.2-3, pp.201-210, 1979.
DOI : 10.1016/0014-2999(79)90366-2

R. C. Silva and M. L. Brandao, Acute and Chronic Effects of Gepirone and Fluoxetine in Rats Tested in the Elevated Plus-maze, Pharmacology Biochemistry and Behavior, vol.65, issue.2, pp.209-216, 2000.
DOI : 10.1016/S0091-3057(99)00193-8

M. R. Thompson, K. M. Li, K. J. Clemens, C. G. Gurtman, G. E. Hunt et al., Chronic Fluoxetine Treatment Partly Attenuates the Long-Term Anxiety and Depressive Symptoms Induced by MDMA (???Ecstasy???) in Rats, Neuropsychopharmacology, vol.29, issue.4, pp.694-704, 2004.
DOI : 10.1038/sj.npp.1300347

T. T. Yen and R. W. Fuller, Preclinical pharmacology of fluoxetine, a serotonergic drug for weight loss, 177S-180S. +6% ns -73% *** -79% ns -73% ns Mot Cx -5% ns +2% ns -78% *** -81% ns -77% ns Sens Cx -6% ns +8% ns -80% *** -80% ns -78% ns Hipp +2% ns +15% ns -41% *** -38% ns -38% ns BLA -13% ns +5% ns -27% *** -22% ns -22% ns, 1992.

±. Means and . Sem, SERT radiolabeling expressed as % of control-treated WT respective values for 4-5 mice per genotype and per treatment Coronal levels: LC, locus coeruleus (IA = -1.72 to -1.54); Ra, raphe (IA = -0.80 to -0.40)

S. Str, See abbreviations in Table S6. Three-way ANOVA followed by Student's t test: * p < 0.050; *** p < 0.001, comparison between genotypes; ns, not significant, comparison between treatments, +22% ns -60% *** -69% ns -70% ns Vis Cx -7% ns +13 % ns -64% *** -68% ns -70% ns Hipp -21% ns +2% ns -57% *** -57% ns -64% ns SN -18% ns +2% ns -2% ns -16% ns -3% ns VTA -18% ns +2% ns +21% *** +8% ns +26% ns MEnt Cx -6% ns -4% ns -67% *** -66% ns -67% ns, 1997.

±. Means and . Sem, NET radiolabeling expressed as % of control-treated WT respective values for 4-5 mice per genotype and per treatment, Coronal levels: LC, locus coeruleus

R. Ra, IA = -0.80 to -0.40); SN, substantia nigra (IA = -0.08 to 0

H. Hipp, IA = 1.98 to 2.74); Str, striatum (IA = 4.78 to 5.34) according to Franklin & Paxinos See abbreviations in Table S6. Three-way ANOVA followed by Student's t test: ns non significant, comparison between genotypes; ns, not significant, comparison between treatments, 1997.

W. Ko, . Ko, . Ko, and . Ko, Coat state Score 58d 16.8±0.3 10, Table S5 Performances of WT and STOP KO males after various treatments Parameter Basal Acute stress Chronic stress Chronic2±0.9* 8.3±1.9$ 8.4±1.4 19.6±0.2$# 12.4±2.0*# Splash test Latency 38.0±6.3 122±16

±. Means and . Sem, WT and STOP KO males in basal condition (Fournet et al. 2012 and this study), 9-12 WT and STOP KO males after acute stress, 9-10 WT and STOP KO males after chronic stress and fluoxetine treatment (mice of both genotypes in equal proportion for each test). (a) number at 20 min; L, light box. Two-way ANOVA followed by post hoc Fisher's tests: * p < 0.05, comparison between genotypes