H. Brun, A. Chèvre, B. Fitt, S. Powers, A. Besnard et al., Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus, New Phytologist, vol.50, issue.1, pp.285-299, 2010.
DOI : 10.1111/j.1469-8137.2009.03049.x

A. Palloix, V. Ayme, and B. Moury, Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies, New Phytologist, vol.34, issue.1, pp.190-199, 2009.
DOI : 10.1111/j.1469-8137.2009.02827.x

J. Quenouille, J. Montarry, A. Palloix, and B. Moury, Farther, slower, stronger: how the plant genetic background protects a major resistance gene from breakdown, Molecular Plant Pathology, vol.7, issue.2, pp.109-118, 2013.
DOI : 10.1111/j.1364-3703.2012.00834.x

URL : https://hal.archives-ouvertes.fr/hal-01208677

J. Poland and R. Nelson, In the Eye of the Beholder: The Effect of Rater Variability and Different Rating Scales on QTL Mapping, Phytopathology, vol.101, issue.2, pp.290-298, 2011.
DOI : 10.1094/PHYTO-03-10-0087

C. Bock, P. Parker, A. Cook, and T. Gottwald, Visual Rating and the Use of Image Analysis for Assessing Different Symptoms of Citrus Canker on Grapefruit Leaves, Plant Disease, vol.92, issue.4, pp.412-424, 2001.
DOI : 10.1094/PDIS-92-4-0530

C. Bock, G. Poole, P. Parker, and T. Gottwald, Plant Disease Severity Estimated Visually, by Digital Photography and Image Analysis, and by Hyperspectral Imaging, Critical Reviews in Plant Sciences, vol.81, issue.2, pp.59-107, 2010.
DOI : 10.2135/cropsci2006.05.0335

R. Sherwood, C. Berg, M. Hoover, and K. Zeiders, Illusions in Visual Assessment of Stagonospora Leaf Spot of Orchardgrass, Phytopathology, vol.73, issue.2, pp.173-177, 1983.
DOI : 10.1094/Phyto-73-173

A. Camargo and J. Smith, An image-processing based algorithm to automatically identify plant disease visual symptoms, Biosystems Engineering, vol.102, issue.1, pp.9-21, 2009.
DOI : 10.1016/j.biosystemseng.2008.09.030

J. Green, H. Appel, E. Rehrig, J. Harnsomburana, J. Chang et al., PhenoPhyte: a flexible affordable method to quantify 2D phenotypes from imagery, Plant Methods, vol.8, issue.1, p.45, 2012.
DOI : 10.2307/2656636

URL : http://doi.org/10.1186/1746-4811-8-45

W. Xie, K. Yu, K. Pauls, and A. Navabi, Application of Image Analysis in Studies of Quantitative Disease Resistance, Exemplified Using Common Bacterial Blight???Common Bean Pathosystem, Phytopathology, vol.102, issue.4, pp.434-442, 2012.
DOI : 10.1094/PHYTO-06-11-0175

C. Wijekoon, P. Goodwin, and T. Hsiang, Quantifying fungal infection of plant leaves by digital image analysis using Scion Image software, Journal of Microbiological Methods, vol.74, issue.2-3, pp.94-101, 2008.
DOI : 10.1016/j.mimet.2008.03.008

L. Contreras-medina, R. Osornio-rios, I. Torres-pacheco, R. Romero-troncoso, R. Guevara-gonzález et al., Smart Sensor for Real-Time Quantification of Common Symptoms Present in Unhealthy Plants, Sensors, vol.12, issue.12, pp.2012784-805
DOI : 10.3390/s120100784

S. Thilagamani and N. Shanthi, A survey on image segmentation through clustering, Int J Res Rev Info Sci, vol.1, pp.16-19, 2011.

L. Chaerle and D. Van-der-straeten, Seeing is believing: imaging techniques to monitor plant health, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1519, issue.3, pp.153-166, 2001.
DOI : 10.1016/S0167-4781(01)00238-X

S. Sankaran, A. Mishra, R. Ehsani, and C. Davis, A review of advanced techniques for detecting plant diseases, Computers and Electronics in Agriculture, vol.72, issue.1, pp.1-13, 2010.
DOI : 10.1016/j.compag.2010.02.007

E. Gorbe and A. Calatayud, Applications of chlorophyll fluorescence imaging technique in horticultural research: A review, Scientia Horticulturae, vol.138, pp.24-35, 2012.
DOI : 10.1016/j.scienta.2012.02.002

S. Rolfe and J. Scholes, Chlorophyll fluorescence imaging of plant???pathogen interactions, Protoplasma, vol.18, issue.3-4, pp.163-175, 2010.
DOI : 10.1007/s00709-010-0203-z

E. Bauriegel, A. Giebel, and W. Herppich, Hyperspectral and Chlorophyll Fluorescence Imaging to Analyse the Impact of Fusarium culmorum on the Photosynthetic Integrity of Infected Wheat Ears, Sensors, vol.11, issue.12, pp.3765-3779, 2011.
DOI : 10.3390/s110403765

É. Belin, D. Rousseau, T. Boureau, and V. Caffier, Thermography versus chlorophyll fluorescence imaging for detection and quantification of apple scab, Computers and Electronics in Agriculture, vol.90, pp.159-163, 2013.
DOI : 10.1016/j.compag.2012.09.014

URL : https://hal.archives-ouvertes.fr/hal-00845915

S. Berger, Z. Benediktyová, K. Matou?, K. Bonfig, M. Mueller et al., Visualization of dynamics of plant???pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana, Journal of Experimental Botany, vol.58, issue.4, pp.797-806, 2007.
DOI : 10.1093/jxb/erl208

L. Chaerle, D. Hagenbeek, D. Bruyne, E. Valcke, R. Van-der-straeten et al., Thermal and Chlorophyll-Fluorescence Imaging Distinguish Plant-Pathogen Interactions at an Early Stage, Plant and Cell Physiology, vol.45, issue.7, pp.887-896, 2004.
DOI : 10.1093/pcp/pch097

M. Pérez-bueno, M. Ciscato, M. Vandeven, I. García-luque, R. Valcke et al., Imaging viral infection: studies on Nicotiana benthamiana plants infected with the pepper mild mottle tobamovirus, Photosynthesis Research, vol.163, issue.2, pp.111-123, 2006.
DOI : 10.1007/s11120-006-9098-0

M. Pineda, J. Olejní?ková, L. Cséfalvay, and M. Barón, Tracking viral movement in plants by means of chlorophyll fluorescence imaging, Journal of Plant Physiology, vol.168, issue.17, pp.2035-2040, 2011.
DOI : 10.1016/j.jplph.2011.06.013

D. Bilgin, J. Zavala, J. Zhu, S. Clough, D. Ort et al., Biotic stress globally downregulates photosynthesis genes, Plant, Cell & Environment, vol.18, issue.10, pp.1597-1613, 2010.
DOI : 10.1111/j.1365-3040.2010.02167.x

J. Jelenska, N. Yao, B. Vinatzer, C. Wright, J. Brodsky et al., AJ domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses, pp.499-508, 2007.

D. Gürlebeck, S. Jahn, N. Gürlebeck, R. Szczesny, B. Szurek et al., type III effectors AvrBs1, AvrBs3 and AvrBs4, Molecular Plant Pathology, vol.7, issue.2, pp.175-188, 2009.
DOI : 10.1111/j.1364-3703.2008.00519.x

W. Butler, Energy Distribution in the Photochemical Apparatus of Photosynthesis, Annual Review of Plant Physiology, vol.29, issue.1, pp.345-378, 1978.
DOI : 10.1146/annurev.pp.29.060178.002021

N. Baker, Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo, Annual Review of Plant Biology, vol.59, issue.1, pp.89-113, 2008.
DOI : 10.1146/annurev.arplant.59.032607.092759

K. Matou?, Z. Benediktyova, S. Berger, T. Roitsch, and L. Nedbal, Case study of combinatorial imaging: What protocol and what chlorophyll fluorescence image to use when visualizing infection of Arabidopsis thaliana by Pseudomonas syringae?, Photosynthesis Research, vol.77, issue.2, pp.243-253, 2006.
DOI : 10.1007/s11120-006-9120-6

O. Björkman and B. Demmig, Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins, Planta, vol.25, issue.4, pp.489-504, 1987.
DOI : 10.1007/BF00402983

K. Maxwell and G. Johnson, Chlorophyll fluorescence -a practical guide, J Exp Bot, vol.51, pp.659-668, 2000.

J. Kuckenberg, I. Tartachnyk, and G. Noga, Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves, Precision Agriculture, vol.98, issue.7, pp.34-44, 2008.
DOI : 10.1007/s11119-008-9082-0

K. Bonfig, U. Schreiber, A. Gabler, T. Roitsch, and S. Berger, Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves, Planta, vol.136, issue.1, pp.1-12, 2006.
DOI : 10.1007/s00425-006-0303-3

N. Woo, M. Badger, and B. Pogson, A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence, Plant Methods, vol.4, issue.1, p.27, 2008.
DOI : 10.1186/1746-4811-4-27

K. Muthuchelian, N. Porta, M. Bertamini, and N. Nedunchezhian, Cypress canker induced inhibition of photosynthesis in field grown cypress (Cupressus sempervirens L.) needles, Physiological and Molecular Plant Pathology, vol.67, issue.1, pp.33-39, 2005.
DOI : 10.1016/j.pmpp.2005.08.007

J. Zou, S. Rodriguez-zas, M. Aldea, M. Li, J. Zhu et al., Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HRspecific downregulation of photosynthesis. MPMI, pp.1161-1174, 2005.

W. Broughton, G. Hern, M. Blair, S. Beebe, P. Gepts et al., Beans (Phaseolus spp.) ??? model food legumes, Plant and Soil, vol.252, issue.1, pp.55-128, 2003.
DOI : 10.1023/A:1024146710611

A. Darrasse, C. Bureau, R. Samson, C. Morris, and M. Jacques, Contamination of bean seeds by Xanthomonas axonopodis pv. phaseoli associated with low bacterial densities in the phyllosphere under field and greenhouse conditions, European Journal of Plant Pathology, vol.70, issue.2, pp.203-215, 2007.
DOI : 10.1007/s10658-007-9164-2

R. Duncan, S. Singh, and R. Gilbertson, Interaction of Common Bacterial Blight Bacteria with Disease Resistance Quantitative Trait Loci in Common Bean, Phytopathology, vol.101, issue.4, pp.425-435, 2011.
DOI : 10.1094/PHYTO-03-10-0095

C. Hennig, Methods for merging Gaussian mixture components Adv Data Anal Classification, pp.3-34, 2010.
DOI : 10.1007/s11634-010-0058-3

S. Ray and B. Lindsay, The topography of multivariate normal mixtures, The Annals of Statistics, vol.33, issue.5
DOI : 10.1214/009053605000000417

C. Fraley and A. Raftery, MCLUST version 3 for R: normal mixture modeling and technical report No. 504, pp.1-57, 2006.

L. Nedbal, J. Soukupová, J. Whitmarsh, and M. Trtilek, Postharvest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality, Photosynthetica, vol.38, issue.4, pp.571-579, 2000.
DOI : 10.1023/A:1012413524395

J. Soukupova, S. Smatanova, L. Nedbal, and A. Jegorov, Plant response to destruxins visualized by imaging of chlorophyll fluorescence, Physiologia Plantarum, vol.77, issue.3, pp.399-405, 2003.
DOI : 10.1016/S0014-5793(98)01430-6

K. Mandal, R. Saravanan, S. Maiti, I. Kothari, A. Plants et al., Einfluss des Falschen Mehltaus auf Photosynthese und Chlorophyllfluoreszenz von Plantago ovata Forsk, Journal of Plant Diseases and Protection, vol.4, issue.4, pp.164-168, 2009.
DOI : 10.1007/BF03356305

L. Bavaresco, M. Bertamini, and F. Iacono, Lime-induced chlorosis and physiological responses in grapevine (Vitis vinifera L . cv . Pinot blanc) leaves, Vitis, vol.45, pp.45-46, 2006.

I. Aranda, L. Castro, R. Alía, J. Pardos, and L. Gil, Low temperature during winter elicits differential responses among populations of the Mediterranean evergreen cork oak (Quercus suber), Tree Physiology, vol.25, issue.8, pp.1085-1090, 2005.
DOI : 10.1093/treephys/25.8.1085

R. Ogaya and J. Peñuelas, Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions, Environmental and Experimental Botany, vol.50, issue.2, pp.137-148, 2003.
DOI : 10.1016/S0098-8472(03)00019-4

K. Jonaviciene, B. Studer, T. Asp, L. Jensen, V. Paplauskien? et al., Identification of genes involved in a water stress response in timothy and mapping of orthologous loci in perennial ryegrass, Biologia Plantarum, vol.10, issue.3, pp.473-483, 2012.
DOI : 10.1007/s10535-012-0110-6

R. Wehrens, A. Simonetti, and L. Buydens, Mixture modelling of medical magnetic resonance data, Journal of Chemometrics, vol.13, issue.6, pp.274-282, 2002.
DOI : 10.1002/cem.721

Q. Li, C. Fraley, R. Bumgarner, K. Yeung, and A. Raftery, Donuts, scratches and blanks: robust model-based segmentation of microarray images, Bioinformatics, vol.21, issue.12, pp.2875-2882, 2005.
DOI : 10.1093/bioinformatics/bti447

D. Vylder, J. Vandenbussche, F. Hu, Y. Philips, W. Van-der-straeten et al., Rosette Tracker: An Open Source Image Analysis Tool for Automatic Quantification of Genotype Effects, PLANT PHYSIOLOGY, vol.160, issue.3, pp.1149-1159, 2012.
DOI : 10.1104/pp.112.202762

W. Pratt, Digital Image Processing: PIKS Inside, pp.623-650, 2001.

J. Harbinson, A. Prinzenberg, W. Kruijer, and M. Aarts, High throughput screening with chlorophyll fluorescence imaging and its use in crop improvement, Current Opinion in Biotechnology, vol.23, issue.2, pp.221-226, 2012.
DOI : 10.1016/j.copbio.2011.10.006

G. Pau, F. Fuchs, O. Sklyar, M. Boutros, and W. Huber, EBImage--an R package for image processing with applications to cellular phenotypes, Bioinformatics, vol.26, issue.7, pp.979-981, 2010.
DOI : 10.1093/bioinformatics/btq046

R. Sokal and F. Rohlf, Biometry: the principles and practice of statistics in biological research, p.937

. Rousseau, Cite this article as High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis, Plant Methods, p.17, 2013.