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Abstract

Epithelial ovarian cancer (EOC) is a significant cause of cancer-related mortality in women, and there has been no

substantial decrease in the death rates due to EOC in the last three decades. Thus, basic knowledge regarding

ovarian tumor cell biology is urgently needed to allow the development of innovative treatments for EOC.

Traditionally, EOC has not been considered an immunogenic tumor, but there is evidence of an immune response

to EOC in patients. Clinical data demonstrate that an antitumor immune response and immune evasion

mechanisms are correlated with a better and lower survival, respectively, providing evidence for the immunoediting

hypothesis in EOC. This review focuses on the immune response and immune suppression in EOC. The

immunological roles of chemotherapy and surgery in EOC are also described. Finally, we detail pilot data

supporting the efficiency of immunotherapy in the treatment of EOC and the emerging concept that

immunomodulation aimed at counteracting the immunosuppressive microenvironment must be associated with

immunotherapy strategies.
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Introduction
Epithelial ovarian cancer (EOC) is the fifth most common

cancer among women and the fourth most common cause

of cancer-related death among women in developing

countries [1]. The prognosis is poor, with a 5-year survival

rate of 30%. The majority of patients relapse within 16–

18 months following the end of treatment and die from

the disease despite response to first-line therapy consisting

of debulking surgery and chemotherapy [2,3]. 15% of

patients die within the first year. No substantial decrease

in the death rate occurred in the last three decades. Thus,

there is an urgent need for basic knowledge of ovarian

tumor biology for the development of innovative EOC

treatments.

Unlike melanoma or renal and hematologic tumor

diseases, EOC is not considered to be immunogenic.

However, there is evidence of an immune response

against EOC in patients [4]. Experimental data show that

the inflammatory microenvironment of EOC prevents

the maturation of myeloid cells, favors regulatory cell

development and restrains the cytotoxic activity of ef-

fector lymphocytes, leading the tumor to escape from

the immune system and triggering cancer progression

[5]. Treatments such as chemotherapy with paclitaxel/

carboplatin and debulking surgery are traditionally con-

sidered to negatively impact the immune system during

EOC [6]. However, recent data challenge this concept

and highlight the major role of immune response in

EOC. Indeed, aforementioned treatments were shown to

modulate the host response and to decrease the im-

munosuppression [7,8]. Thus, immunotherapies aimed

at increasing the host immune response or decreasing

immunosuppression were tested in preclinical and clinical

studies and are emerging as potential strategies to enhance

classical EOC treatments.

In this article, we present an overview of the current

understanding of the immune response and immune

suppression in EOC. The immunological role of che-

motherapy and surgery is highlighted, and pilot data

supporting the efficiency of immunotherapy in EOC

treatment are reviewed.
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Evidence of an immune response in EOC

EOC expresses or overexpresses tumor-associated anti-

gens (TAA), i.e. antigens (Ag) acquired by tumor cells in

the process of neoplastic transformation that can elicit a

specific T-cell immune response by the host. In 1993,

EOC ascites were found to contain CD8+ T-cells capable

of recognizing HER2/neu-positive tumor cells [9]. 5 to

66% of EOC exhibit this EGFR-related glycoprotein that

activates signaling pathways involved in cellular prolifer-

ation [10,11]. Many other TAA were described in EOC,

such as folate receptor(FR)-α [12], epithelial cell adhe-

sion molecule (EpCAM) [13], human epididymis protein

4 [14], p53 [15], mucin-like MUC16 (CA125) and

MUC1 (CA15.3) [16] and TAA of the cancer-testis

group [17,18]. Tumor-reactive T-cells and antibodies

(Ab) directed against TAA were detected in the periph-

eral blood of patients with advanced-stage disease at the

time of diagnosis [15,19], and tumor-reactive T-cells

were isolated from tumors or ascites [20].

Furthermore, there is clinical evidence for the role of

immunosurveillance against EOC. The detection of

intraepithelial tumor-infiltrating lymphocytes (TIL)

correlates with clinical outcome. Zhang et al. detected

CD3+ TIL in 102/186 frozen specimens from patients

with stage III/IV EOC [21]. The five-year progression-

free survival rates were 31.0% and 8.7% for patients

with and without TIL, respectively. The presence of

TIL correlated with progression-free survival in multi-

variate analysis (p < 0.001) [21]. Recently, other studies

confirmed that the CD3+ TIL count is a significant

prognosis factor in EOC (Table 1) [22-32]. High frequen-

cies and activity levels of immune effector cells such as

CD8+ T-cells, Natural Killer(NK)-cells and Vγ9Vδ2T-cells

are correlated with positive clinical outcomes for EOC pa-

tients [33,34]. Thelper(Th)-17 cells, a recently discovered

T-lymphocyte subset, were found in proportionally

higher number in EOC microenvironment in compari-

son with other immune cells [35,36]. In EOC patients,

Th17 levels in the tumor correlated positively with

Th1-cells, cytotoxic CD8+ T-cells and NK-cells and

Th17 levels in ascites correlated positively with patient

survival [35]. Intriguingly, Th17 were reported to pro-

mote either tumor cell growth or antitumor response

and their role in cancer development is currently under

Table 1 Clinical arguments for the immunoediting hypothesis in epithelial ovarian carcinoma

Authors Year Findings

Spontaneous anti-tumor response

Zhang L et al. [21] 2003 Association between intraepithelial T-cell infiltration (TIL CD3+) and patient survival

Raspollini NR et al. [22] 2005 Association between intraepithelial T-cell infiltration (TIL CD3+) and patient survival (plus chemotherapeutic
response)

Sato E et al. [23] 2005 Association between intraepithelial T-cell infiltration (TIL CD8+) and patient survival

Hamanishi J et al. [24] 2007 Association between intraepithelial T-cell infiltration (TIL CD3+) and patient survival

Clarke B et al. [25] 2008 Association between intraepithelial T-cell infiltration (TIL CD8+) and patient survival (only for high grade serous
EOC, but not for endometrioïd or mucinous EOC)

Shah CA et al. [26] 2008 Association between intraepithelial T-cell infiltration (TIL CD8+) and optimal debulking surgery

Tomsova M et al. [27] 2008 Association between intraepithelial T-cell infiltration (TIL CD3+) and patient survival

Callahan MJ et al. [38] 2008 Association between intraepithelial T-cell infiltration (TIL CD8+) and patient survival

Han LY et al. [28] 2008 Association between intraepithelial T-cell infiltration (TIL CD3+ and CD8+) and patient survival

Stumpf M et al. [29] 2009 Association between intraepithelial T-cell infiltration (TIL CD3+ and CD8+) and patient survival

Leffers N et al. [30,39] 2009 Association between intraepithelial T-cell infiltration (TIL CD8+) and patient survival

Milne K et al. [31] 2009 Association between intraepithelial T-cell infiltration (TIL CD3+ and CD8+) and patient survival

Adams SF et al. [32] 2009 Association between intraepithelial T-cell infiltration (TIL CD3+ and CD8+) and patient survival

Kryczek I et al. [35] 2009 Association between intraepithelial T-cell infiltration (TIL CD4+ with IL-17 secretion) and patient survival

Tumor immune evasion

Curiel TJ et al. [36] 2004 Inverse association between survival and intratumoral regulatory T cells (CD4+CD25+FoxP3+)

Wolf D et al. [40] 2005 Inverse association between survival and intratumoral regulatory T cells (FoxP3+)

Dong HP et al. [41] 2006 Inverse association between survival and intratumoral NK (CD3- CD16+) or B cells (CD19+)

Kryczek I et al. [42] 2007 Inverse association between survival and intratumoral B7-H4+ macrophage or regulatory T cells (FoxP3+)

Hamanishi J et al. [24] 2007 PD-L1 expression by tumor predicts low T-cell infiltration

Buckanovitch RJ et al. [43] 2008 Endothelin B receptor (ETBR) expression restricts T-cell infiltration and predicts poor survival

Labidi-Galy SI [44,45] 2011 Inverse association between survival and intratumoral pDC (CD4+, CD123+, BDCA2+)

PD-1: programmed cell death 1; PD-L1: PD-1 ligand 1; ETBR: endothelin B receptor; pDC: plasmacytoïd dendritic cells.
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debate [37]. Finally, in addition to TIL, the number of per-

ipheral blood immune cells, e.g. NK-cells, is also corre-

lated with survival in EOC [33]. All these results support

the existence of immunosurveillance in EOC (Figure 1).

Immune escape in EOC

The tumor immunosurveillance concept was postulated

in the 1960s by Burnet and Thomas, who proposed that

the immune system patrols the body to recognize and

destroy host cells that become cancerous and that the

immune system is responsible for preventing cancer de-

velopment [46]. This concept was then replaced by the

cancer-immunoediting hypothesis, in which the immune

system shapes tumor immunogenicity with three succes-

sive phases: elimination, equilibrium and escape [47].

Immune escape in EOC involves several mechanisms

that implicate tumor, immune and stromal cells. Ovarian

tumor cells escape immune recognition by downregulating

surface molecules involved in Ag presentation, such as β2-

microglobulin and Major Histocompatibility Complex

(MHC) [28]. Similarly, the downregulation of MHC class

I-related chain A (MICA) expression impedes the detec-

tion of tumor cells by innate cytotoxic effector cells

through the engagement of the NKG2D-activating recep-

tor [48,49]. Additionally, ovarian tumor cells overexpress

molecules that counteract the cytotoxic activities of im-

mune cells: CA125 binds the NK-cell inhibitory receptor

(KIR) siglec-9, thereby protecting themselves from NK-

mediated lysis [50,51]; the macrophage migration in-

hibitory factor (MIF) downregulates NKG2D-activating

receptor expression on NK-cells [52]. Furthermore, en-

gagement of programmed death-1 (PD-1) on CD8+ T-cells

by programmed death-1 ligand-1 (PD-L1) expressed by

ovarian tumor cells impairs the effector functions of

these lymphocytes [24,53]. Wide panel of cancers, includ-

ing EOC, were also shown to express indolamine-2,3-

Figure 1 Immune network in EOC. EOC is immunogenic and expresses tumor-associated antigens such as HER2/neu, CA125 and Folate

Receptor α. Various immune effectors such as CD8+ T-cells, NK-cells and Vγ9Vδ2T-cells can attack tumor cells, but immunosuppressive crosstalk

counteracts the functions of these effector cells. Treg, tolerogenic DC, MDSC, B7-H4+ TAM and non-immune cells such as mesenchymal stem

cells and tumor cells themselves halt antitumor activities through cell-cell contacts (CA125/siglec pathway, PD-1 and CTLA-4 immunosuppressive

checkpoints) or the production of soluble factors (IL-10, TGF-β, PGE2, MIF, arginase-1, and IDO).
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dioxygenase (IDO), an intracellular enzyme that catalyzes

the rate-limiting step in the metabolism of the essential

amino acid tryptophan [54,55]. IDO is a beneficial host

mechanism regulating immune responses in various

contexts such as pregnancy, transplantation or infec-

tion. It was proposed to elicit feedback process, there-

fore preventing deleterious consequences of excessive

immune responses. However, this endogenous mechanism

is hijacked by tumors to establish immunotolerance to

tumor antigens [56,57].

Immune cells also play a major role in the immune

escape in EOC [58]. The EOC-specific recruitment of

CD4+CD25+FoxP3+ regulatory T-cells (Treg), tolerogenic

dendritic cells (DC), B7-H4+ tumor-associated macro-

phages (TAM) and myeloid-derived suppressor cells

(MDSC) fosters immune privilege and predicts reduced

survival in EOC (Table 1) [23,36,44,59-62]. Accumulation

of Treg is now well documented in various tumors includ-

ing EOC [23,36,38-41]. CCR4 chemokine receptor expres-

sion confers to Treg higher capacity than effector T-cells

to infiltrate the tumor in response to CCL22 chemokine

produced by either tumor cells or TAM [36]. In addition,

Treg could originate from in situ expansion. In that set-

ting, ICOS-ligand costimulation provided by plasmacytoid

DC (pDC) was recently highlighted as a prominent signal

triggering in situ Treg expansion in some tumors, in-

cluding EOC [63,64]. At last, de novo conversion of

FoxP3- cells into Treg was shown to occur in the tumor

as a consequence of TGF-β stimulation or IDO induc-

tion [65,66]. Treg mainly mediate immunosuppression

through cell-cell contacts with DC or effector cells or

by the secretion of immunosuppressive cytokines, in-

cluding IL-10, IL-35 and TGF-β [67]. Treg notably con-

tribute to DC tolerization, thereby further reducing the

effector T-cell activation and proliferation. Interestingly,

association of tumor regulatory T-cells with high hazard

ratio for death and decreased survival times is currently

well documented in EOC [23,36,42]. Besides Treg, DC

are instrumental in establishing immunosupression in

cancer. While DC were initially recognized as the pri-

mary orchestrators of the immune response, their role

in the immunotolerance is now well established [68].

Importantly, both conventional myeloid DC (cDC) and

pDC are characterized by high plasticity [69]. Conse-

quently, their immune properties could be modulated by

environmental stimuli and tumors may benefit from this

Achille’s heel to induce DC tolerization and to reduce the

adaptive immunity to tumor antigens. Accordingly, studies

showed that the EOC microenvironment converts DC

toward an immunosuppressive phenotype [70]. In a

mouse model of EOC, Scarlett et al. showed that the

DC phenotype controls EOC progression. Indeed, the

switch of infiltrating-DC from activating to regulatory

phenotype coincides with rapid tumor progression to

terminal disease [62]. The role of pDC in EOC immunity

was proposed by Zou et al. that evidenced the recruitment

of pDC in response to stromal-derived factor-1 (SDF-1/

CXCL-12) secretion by EOC [71]. The accumulation of

pDC within the EOC was shown to be associated with

shorter progression-free survival [44]. Tolerogenic DC

may exert profound immunosuppressive effects on ef-

fector lymphocytes. Alteration of the IFN-α production by

pDC was recently documented in EOC [44]. Moreover,

through PD-L1/PD-L2 expression, DC can engage the

PD-1 inhibitory pathway, thus inhibiting lymphocyte

proliferation and effector functions [72,73], inducing

tumor-specific T-cell apoptosis [74] and promoting the

differentiation of CD4+ T-cells into Treg [75]. Tolerogenic

DC can also turn-down the immune response through

the induction of IDO activity that inhibits CD8+ T-cell

proliferation [76] and decreases NKG2D expression on

NK-cells [77]. As aforementioned for DC, the tumor

microenvironment also strongly polarizes the macrophage

differentiation and gives rise to TAM [37]. B7-H4+ macro-

phages, a subset of TAM, was shown to suppress TAA-

specific T-cell immunity [60]. An inverse correlation was

evidenced between the intensity of B7-H4 expression on

macrophages in EOC and patient survival [42]. Moreover,

average 5-year survival rate was found significantly higher

in EOC patients with low densities of TAM than in

patients with increased TAM populations [78]. At last,

MDSC are immature myeloid cells with immunosuppres-

sive properties that were evidenced in both mouse model

of EOC and EOC patients [61,79,80]. MDSC exhibit

increased level of arginase-1 (ARG-1) and inductible

Nitric Oxide Synthase (iNOS) activities. Deprivation of L-

Arginine in the tumor microenvironment is emerging as a

key immunosuppressive mechanism. It leads to CD3-zeta

chain downregulation, thereby inhibiting effector T-cell

activation [81]. Increased levels of NO, along with reactive

oxygen and nitrogen species, disrupt signaling through the

IL-2 receptor [82] and alter Ag recognition by nitrating

the TCR [83]. Moreover, MDSC were shown to facilitate

effector T-cell conversion into Treg [84] and to inhibit

intratumoral migration of CD8+ effectors because of the

nitration of CCL2 chemoattractant [85].

Third player in tumor escape is the stromal cell popu-

lation. Overexpression of the endothelin-B receptor by

tumor endothelial cells inhibits concurrent ICAM-1 ex-

pression, thereby impairing the ICAM-1/LFA-1-mediated

transmigration of leukocytes [86]. Overexpression of the

endothelin-B receptor is associated with the absence of

TIL and short survival time in EOC patients [43]. Further-

more, stromal cells may provide chemoattractants for the

immune cells e.g. SDF-1/CXCL12 that recruits pDC [71].

They are also able to secrete soluble immunosuppressive

factors e.g. prostaglandin-E2 (PGE2) which is produced by

mesenchymal stem cells (MSC).
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Finally, the EOC microenvironment is characterized by

the presence of numerous immunosuppressive soluble or

cellular factors (IL-10, TGF-β, PGE2, MIF, HLA-G, IDO,

arginase-1, PD-L1, B7-H4 and Fas-ligand), which can ori-

ginate from various sources, including tumor, immune

and stromal cells [87-91]. PGE2 can be secreted by both

MSC and EOC tumor cells. Of note, overexpression of

COX-2, an inducible enzyme that triggers PGE2 synthesis,

by ovarian tumor cells correlates with resistance to

chemotherapy and poor prognosis [92]. PGE2 inhibits NK

and γδ T-cell cytotoxicity [45,93,94] and induces the dif-

ferentiation of CD4+ T-cells into Treg [95]. Similarly, IDO

is expressed in ovarian tumor cells and tumor-infiltrating

DC [54,55,96]. IDO expression was reported in 43% of an-

alyzed EOC tissues (83/192) [97]. Moreover, its expression

was correlated with worse patient survival [54,55] and

with enhanced peritoneal tumor dissemination [55,98].

IDO is currently thought as one of the main factors that

contribute to tumor-induced immunosuppression by

depleting tryptophan from the microenvironment and

producing tryptophan metabolite kynurenine. Depletion

of tryptophan is sensed by GCN2 kinase pathway driv-

ing effector T-cell anergy and apoptosis [99]. Effects of

kynurenine are mediated by the aryl hydrocarbon receptor

transcription factor that induces increased survival and

motility in cancer cells while favoring Treg expansion and

suppressive effects in effector T-cells [100,101].

Thus, regulatory cells, along with soluble and cellular

immunosuppressive factors, create a tolerogenic micro-

environment in EOC that compromises the antitumoral

immune response [89]. These EOC immunosuppressive

networks characterize the “cancer immunoediting” concept,

which emphasizes a dynamic process of interaction be-

tween cancer and the host immune system [47] (Figure 1).

Modulation of the immune response against EOC with

debulking surgery or chemotherapy

Conventional EOC treatment uses debulking surgery

and systemic chemotherapy. Surgery decreases the

tumor burden and removes poorly vascularized tissues

while cytotoxic drugs eradicate residual tumor cells

[7,102,103]. Little information is available regarding the

impact of surgery on the immunological status in EOC

patients. Major surgery would induce immunosuppres-

sion because of the downregulation of T helper(Th)-1

response [6,104]. However, there is some evidence that

tumor debulking reduces tumor-induced immunosup-

pression in EOC [7,105]. Napoletano et al. demonstrated

that surgery significantly decreases the proportions of

Treg and naive CD4+ T-cells while significantly increas-

ing the ratio of CD8+ T-cells/Treg and the proportions

of effector T-cells among the peripheral blood mono-

nuclear cells [7]. Moreover, surgery significantly increases

IFN-γ secretion by peripheral CD8+ T-cells and reduces

the IL-10 immunosuppressive factor concentration in the

serum [7]. Thus, cancer immunosuppression is partially

reversible, and acquired immunity is enhanced by tumor

debulking surgery in EOC [7].

Regarding chemotherapy, the frequent induction of

lymphopenia suggests that this treatment may be im-

munosuppressive. However, recent data indicate that im-

munity plays a major role in the therapeutic mechanisms

associated with chemotherapy [106,107]. Accordingly, in

advanced-EOC patients treated with platinum-based

chemotherapy, an optimal tumor debulking outcome was

more frequent when CD3+ TIL are present [21]. In

addition, paclitaxel or cisplatin used in EOC cause the

upregulation of mannose-6-phosphate receptor expres-

sion on murine tumor cells. This upregulation sensitizes

tumor cells to granzyme-B protease released by cyto-

toxic T-lymphocytes [108]. Paclitaxel can also stimulate

the proliferation of T-cells and enhance the cytolytic ac-

tivity of NK-cells in models of breast cancer [106,109].

Moreover, in advanced EOC, successful chemotherapy

was shown to be associated with improved functions and

increased proportions of CD8+ effector T-cells [7,8]. Fur-

thermore, chemotherapy decreases immunosuppression

by reducing the number of circulating Treg observed after

neoadjuvant chemotherapy in EOC [7]. Some antitumor

agents can also trigger immunogenic tumor cell death,

causing the cancer cells to expose or secrete immunogenic

signals that trigger an anticancer immune response. Of

note, not all types of chemotherapy, but oxaliplatin and

3/25 tested anthracyclines, elicit immunogenic cell

death [110-112]. Altogether, these data provide evidence

that debulking surgery and chemotherapy may restore,

by direct and indirect effects, the equilibrium phase or

the elimination phase in tumors that escaped initial

immunosurveillance [106].

Immunotherapy in EOC: how to counteract

immunosuppression?

Preclinical and preliminary clinical studies aimed at prov-

ing the immunotherapy concept in EOC were initiated

by using monoclonal Ab (mAb), vaccinations or adoptive

T-cell transferts [113-115]. The majority of these studies

were uncontrolled phase I/II studies, with small sample

sizes and heterogeneous inclusion criteria (recurrent or

chemotherapy-refractory diseases) disrupting the compari-

sons and the identification of the best strategy.

Several mAb targeting TAA were tested in EOC [116]:

anti-CA125 oregovomab and abagovomab [117-119]; anti-

HER-2/neu trastuzumab and pertuzumab [10,120]; anti-

FR-α farletuzumab α [121], anti-EpCAM catumaxomab

[122] and anti-Tag72 B72.3 [123]. All these mAb dem-

onstrated adequate safety and tolerability but failed to

demonstrate clear clinical benefits, even when an im-

munological response was evidenced [114,115]. Active
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immunotherapy by vaccination based on peptides or

cellular approaches were also evaluated. Clinically tested

peptides include NY-ESO-1 [124,125], p53 [126], HER2-

neu [127] and multiple constructed-peptides (HER2-neu/

MAGE-A1/FRα [128] and MUC-1/carcinoembryonic anti-

gen [129]). In addition, cell vaccines include DC pulsed

with ARNm (FRα [130]), peptides (HER2-neu, MUC1

[131]), autologous tumor Ag [132] or whole tumor cell

lysate [133]. Vaccine therapies were well tolerated and

demonstrated immunological responses, but provided only

minor clinical benefits. Of note, these studies enrolled low

numbers of patients and have generally not yet evolved

past phase I/II studies. A third immunotherapy strategy is

adoptive T-cell therapy, which uses cytotoxic lymphocytes

with natural or engineered reactivity against cancer cells.

Cytotoxic lymphocytes are generated in vitro and then

transferred back into the patient to elicit cytotoxic re-

sponses against the patient’s own tumor cells. Only five

phase I/II EOC studies, which enrolled few patients (<20),

are available [134-138]. They used either TIL or peripheral

autologous T-cells and were well tolerated; unfortunately,

only modest clinical benefits were demonstrated. Thus,

to date, results of these trials are disappointing, regard-

less of the strategy [115]. However, these trials may

suffer from some pitfalls. First, they often enrolled

patients with recurrent or refractory-chemotherapy

diseases, i.e. patients at terminal stages of the disease,

with strong immunodepression. It is likely that enroll-

ment of patients at earlier stages of disease could be

more successful. Secondly, all these trials focused on

the recognition and killing of tumor cells and

neglected to consider the immunosuppressive impact

of the tumor microenvironment. Thus, improvement

of theses immunotherapies is needed. For example,

chimeric antigen receptor(CAR)-modified T cell ther-

apy is highly promising [139,140]. CAR T-cells could

be engineered to only express the downstream pathway

of activating receptors. This refined adoptive therapy

skips inhibitory signals expressed by the tumor envir-

onment. In addition, use of adjuvant drugs targeting

immunosuppressive cells or soluble/cellular immuno-

modulatory factors could be the key to fully unleash

the potential of immunotherapy by breaking peripheral

tolerance.

Below, we review some immunomodulatory tools

already in clinical use or likely to be assessed in the near

future, that interact with the immunosuppressive factors

found in the EOC microenvironment.

First approach may consist in depleting the host of the

regulatory cells or in limiting their recruitment within

the tumor. Treg depletion may be achieved using low-

dose cyclophosphamide which prevents, under incom-

pletely understood mechanism, Treg development and

functionality [141,142]. An alternative strategy uses the

expression by Treg of the IL-2 receptor alpha (CD25).

Recombinant fusion protein of IL-2 and diphtheria toxin

(OntakW, Eisai) was tested in EOC patients and showed

effective depletion of circulating Treg [143]. Moreover,

in patients with metastatic breast cancer, the anti-CD25

mAb daclizumab (ZenapaxW, Roche) demonstrated se-

lective T-lymphocyte killing properties, allowing Treg

depletion for several weeks [144]. However, it is unclear

if Treg depletion occurs at EOC locations (solid tumor,

malignant ascites) and results in tumor regression

[143-145]. Moreover, as effector cells also express

CD25, anti-CD25 mAb may also induce unwanted de-

pletion of effector cells [146]. In addition, blocking the

ICOS-pathway could inhibit the pDC-triggered prolif-

eration of Treg within the tumor [64]. However, as

ICOS pathway also favors the differentiation of T

helper(Th)-17 cells which might either promote tumor

growth or antitumor response [35,37,147-150] careful

preclinical investigations of ICOS inhibitors (314.8

mAb) is needed [63].

The role of chemoattractants in the recruitment of

immune cells also gives a great opportunity to reduce

the infiltration of regulatory cells within the tumor

[151]. First candidates are under investigation. CCR4

antagonists were shown to block the recruitment of Treg

instructed by CCL22 and CCL17 and to favor the induc-

tion of antigen-specific CD8+ T cell response after vac-

cination [152]. Similarly, BindaritW that inhibits CCL2

synthesis and therefore restricts the recruitment in the

tumor of immature myeloid cells, was shown to induce

tumor regression in prostate and breast cancer animal

models [153]. Regulatory cell depletion could also be

achieved by improving the maturation of immature

myeloid cells [154] using all trans retinoic acid [155] or

ultra-low non-cytotoxic doses of paclitaxel (chemo-

immunomodulation) [156].

Another attractive approach is the use of either antag-

onists of immune-repressor molecules or agonists of

immune-activating receptors [157]. Checkpoint blockade

receptors comprise CTLA-4, PD-1 and NK inhibitory

receptors (KIR) that, upon engagement, dampen the im-

mune response. CTLA-4 predominantly regulates T-cells

at the priming phase of activation by competing with

CD28+ for binding of B7-1 and B7-2 on DC. CTLA-4

engagement prevents T-cells from achieving full activa-

tion. Accordingly, anti-CTLA-4 mAb were shown to

activate CD4+ and CD8+ effector T-cells both directly by

removing inhibitory checkpoints and indirectly via the

inhibition of regulatory T-cell activity [158]. Eleven EOC

patients, previously vaccinated with GM-CSF and irradi-

ated autologous tumor cells, received anti-CTLA-4

ipilimumab (YervoyW, Bristol-Myers-Squibb, BMS). Sig-

nificant antitumor effects were observed in a minority of

these patients and were correlated with increased CD8+
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T-cells/Treg ratio [159]. In contrast to CTLA-4, PD-1 sig-

naling occurs in the tumor, where PD-L1-expressing

tumor cells can signal through PD-1 on TIL to turn-down

the antitumor T-cell response. In EOC, the PD-1/PD-L1

pathway seems to be a dominant immunosuppression

mechanism [73]. PD-L1 expression in EOC was demon-

strated to be an independent unfavorable prognostic factor

and to promote peritoneal dissemination [24,160]. Several

PD-1/PD-L1-pathway blocking agents were assessed in

various cancer types and promising results were recently

reported. Nivolumab (BMS-936558, Bristol-Myers-Squibb)

was tested in 296 patients most harboring lung cancer,

renal cell cancer and melanoma, with clinical benefits ap-

parent in 20 to 25% of the patients [161]. Impressive dur-

able responses were reported. 25/42 patients with PD-L1

-positive tumor experienced an objective response while

none of the 17/42 PD-L1-negative patients did. However,

lack of prognostic association was reported elsewhere and

the usefulness of PD-L1 as a biomarker need to be ex-

plored in larger prospective studies [162]. In addition,

Bramher and colleagues reported that 1/17 EOC patients

treated with anti-PD-L1 mAb (BMS-936559) experienced

an objective response [163]. New trials enrolling patients

with solid tumor of multiple origins are underway and

informative data in EOC are expected [164]. Inhibition of

the cytotoxic properties of NK-cells through KIR engage-

ment may also contribute to the tumor escape. Some anti-

KIR antibodies, such as lilirumab (Bristol-Myers-Squibb),

recently entered clinical development phases. First data

were obtained in hematological diseases and phase I stud-

ies recruiting patients with solid tumors are ongoing

[165,166]. As a corollary, agonistic agents of costimulatory

molecules such as glucocorticoid-induced TNFR (GITR),

OX40, CD137 are candidates to boost the antitumor

immune response. A dose-escalation phase I clinical trial

(NCT01239134) with agonist anti-GITR mAb (TRX518)

was recently initiated.

Third possibility is to repress the activity of enzymes

(IDO, ARG-1, iNOS) that were shown to inhibit the im-

mune response. Data from first clinical trials using IDO

inhibitors, notably the isomers of 1-methyl-tryptophan

(1MT), were disappointing, but these studies may suffer

from lack of potent and selective IDO inhibitors. New

compounds recently entered clinical trials [167]. A phase

II study of IDO inhibitor INCB024360 is currently

recruiting patients with biochemical-recurrent-only EOC

following complete remission with first-line chemotherapy

(clinical trial: NCT01685255). In addition, inhibitors of

phosphodiesterase(PDE)-5, e.g. sildenafil, were reported to

increase intracellular concentrations of cGPM, resulting in

the inhibition of both ARG-1 and iNOS. PDE-5 inhibitors

along with nitroaspirin or specific ARG-1/iNOS inhibitors

might provide new therapeutic strategy to recover potent

antitumor immune response [154].

Lastly, PGE2 was shown to be a crucial immunosup-

pressive factor in EOC, as it impairs the cytotoxic proper-

ties of effector cells such as Vγ9Vδ2T-cells [45] and also

induces the differentiation of MDSC from bone marrow

stem cells in a mouse model [168]. PGE2 biosynthesis is

regulated by the inducible COX-2 enzyme and could be

inhibited by the COX-2-specific inhibitor celecoxib

(CelebrexW, Pfizer). In a mouse model, celecoxib prevented

the local and systemic expansion of MDSC, impaired the

suppressive function of these cells, and significantly im-

proved vaccine immunotherapy [169]. Thus, celecoxib,

currently used in the prevention of colorectal adenoma-

tous polyps [170], could be tested in combination with

immunotherapy to reduce the immunosuppression by

MDSC in EOC. Another possible strategy to counteract

the immunosuppressive influence of PGE2 on Vγ9Vδ2T

cells could be to restore the cytotoxic properties of these

cells with a zoledronate perfusion [45]. In addition,

zoledronate was shown to prevent the immunosuppressive

polarization of TAM [171,172] which is a major compo-

nent of the leukocyte infiltrate in the tumor microenvir-

onment and plays a dominant role in the production of

immune suppressive cytokines in EOC [60]. Thus,

zoledronate, which is currently used for the manage-

ment of osteoporosis and bone metastasis, appears to be

an attractive molecule to reinforce the immune re-

sponse. Altogether, these data warrant further explor-

ation of combinatorial therapies with immunotherapy

and bisphosphonates.

In conclusion, accumulated evidences support the

immunoediting hypothesis and the idea that EOC is im-

munogenic. Immunotherapeutic protocols aimed at modu-

lating the immune system to strengthen the spontaneous

antitumor immune response are under investigation.

Targeting the immunosuppressive mechanisms could be

the key to fully unleash the potential of immunotherapy.

The combination of molecules endowed with immuno-

modulatory properties with immunotherapy targeting the

tumor cells will hopefully increase the survival of EOC

patients. Careful preclinical evaluation will be necessary to

screen optimal combinations before clinical trials.
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