M. Erlander, N. Tillakaratne, S. Feldblum, N. Patel, and A. Tobin, Two genes encode distinct glutamate decarboxylases, Neuron, vol.7, issue.1, pp.91-100, 1991.
DOI : 10.1016/0896-6273(91)90077-D

M. Solimena, F. Folli, R. Aparisi, G. Pozza, D. Camilli et al., Autoantibodies to GABA-ergic Neurons and Pancreatic Beta Cells in Stiff-Man Syndrome, New England Journal of Medicine, vol.322, issue.22, pp.1555-1560, 1990.
DOI : 10.1056/NEJM199005313222202

J. Honnorat, A. Saiz, and B. Giometto, Cerebellar Ataxia With Anti???Glutamic Acid Decarboxylase Antibodies, Archives of Neurology, vol.58, issue.2, pp.225-230, 2001.
DOI : 10.1001/archneur.58.2.225

M. Vianello, B. Tavolato, M. Armani, and B. Giometto, Cerebellar ataxia associated with anti-glutamic acid decarboxylase autoantibodies, The Cerebellum, vol.2, issue.1, pp.77-79, 2003.
DOI : 10.1080/14734220309432

K. Nanri, H. Niwa, and H. Mitoma, Low-Titer Anti-GAD-Antibody-Positive Cerebellar Ataxia, The Cerebellum, vol.22, issue.Suppl 1, pp.171-175
DOI : 10.1007/s12311-012-0411-5

R. Raju and C. Hampe, Immunobiology of Stiff-Person Syndrome, International Reviews of Immunology, vol.79, issue.1-2, pp.79-92, 2008.
DOI : 10.1001/archneur.61.6.938

M. Dalakas, M. Li, M. Fujii, and D. Jacobowitz, Stiff person syndrome: Quantification, specificity, and intrathecal synthesis of GAD65 antibodies, Neurology, vol.57, issue.5, pp.780-784, 2001.
DOI : 10.1212/WNL.57.5.780

K. Dinkel, H. Meinck, K. Jury, W. Karges, and W. Richter, Inhibition of ?-aminobutyric acid synthesis by glutamic acid decarboxylase autoantibodies in stiff-man syndrome, Annals of Neurology, vol.2, issue.2, pp.194-201, 1998.
DOI : 10.1002/ana.410440209

E. Bjork, L. Velloso, O. Kampe, and F. Karlsson, GAD Autoantibodies in IDDM, Stiff-Man Syndrome, and Autoimmune Polyendocrine Syndrome Type I Recognize Different Epitopes, Diabetes, vol.43, issue.1, pp.161-165, 1994.
DOI : 10.2337/diab.43.1.161

L. Levy, I. Levy-reis, M. Fujii, and M. Dalakas, Brain gamma-aminobutyric acid changes in stiff-person syndrome, Arch Neurol, vol.62, issue.6, pp.970-974, 2005.

K. Hill, S. Clawson, J. Rose, N. Carlson, and J. Greenlee, Cerebellar Purkinje cells incorporate immunoglobulins and immunotoxins in vitro: implications for human neurological disease and immunotherapeutics, Journal of Neuroinflammation, vol.6, issue.1, p.31, 2009.
DOI : 10.1186/1742-2094-6-31

H. Mitoma, S. Song, and K. Ishida, Presynaptic impairment of cerebellar inhibitory synapses by an autoantibody to glutamate decarboxylase, Journal of the Neurological Sciences, vol.175, issue.1, pp.40-44, 2000.
DOI : 10.1016/S0022-510X(00)00272-0

K. Ishida, H. Mitoma, and Y. Wada, Selective loss of Purkinje cells in a patient with anti-glutamic acid decarboxylase antibody-associated cerebellar ataxia, Journal of Neurology, Neurosurgery & Psychiatry, vol.78, issue.2, pp.190-192, 2007.
DOI : 10.1136/jnnp.2006.091116

M. Manto, M. Laute, and M. Aguera, Effects of anti???glutamic acid decarboxylase antibodies associated with neurological diseases, Annals of Neurology, vol.267, issue.6
DOI : 10.1002/ana.21123

URL : https://hal.archives-ouvertes.fr/inserm-00141558

N. Hansen, B. Grunewald, and A. Weishaupt, Human Stiff person syndrome IgG-containing high-titer anti-GAD65 autoantibodies induce motor dysfunction in rats, Experimental Neurology, vol.239, pp.202-209, 2013.
DOI : 10.1016/j.expneurol.2012.10.013

T. Lorish and G. Thorsteinsson, Stiff-Man Syndrome Updated, Mayo Clinic Proceedings, vol.64, issue.6, pp.629-636, 1989.
DOI : 10.1016/S0025-6196(12)65339-7

R. Raju, J. Foote, and J. Banga, Analysis of GAD65 Autoantibodies in Stiff-Person Syndrome Patients, The Journal of Immunology, vol.175, issue.11, pp.7755-7762, 2005.
DOI : 10.4049/jimmunol.175.11.7755

M. Manto, C. Hampe, V. Rogemond, and J. Honnorat, Respective implications of glutamate decarboxylase antibodies in stiff person syndrome and cerebellar ataxia, Orphanet Journal of Rare Diseases, vol.6, issue.1, p.3, 2011.
DOI : 10.1186/1750-1172-6-3

URL : https://hal.archives-ouvertes.fr/inserm-00569924

L. Petrosini, M. Molinari, and M. Dell-'anna, Cerebellar Contribution to Spatial Event Processing: Morris Water Maze and T-maze, European Journal of Neuroscience, vol.96, issue.2, pp.1882-1896, 1996.
DOI : 10.1111/j.1460-9568.1996.tb01332.x

F. Foti, D. Laricchiuta, and D. Cutuli, Exposure to an Enriched Environment Accelerates Recovery from Cerebellar Lesion, The Cerebellum, vol.8, issue.1, pp.104-119, 2011.
DOI : 10.1007/s12311-010-0236-z

F. Federico, M. Leggio, P. Neri, L. Mandolesi, and L. Petrosini, NMDA receptor activity in learning spatial procedural strategies II. The influence of cerebellar lesions, Brain Res Bull, vol.70, pp.4-6356, 2006.

C. Gandhi, R. Kelly, R. Wiley, and T. Walsh, Impaired acquisition of a Morris water maze task following selective destruction of cerebellar purkinje cells with OX7-saporin, Behavioural Brain Research, vol.109, issue.1, pp.37-47, 2000.
DOI : 10.1016/S0166-4328(99)00160-6

M. Leggio, P. Neri, and A. Graziano, Cerebellar contribution to spatial event processing: characterization of procedural learning, Experimental Brain Research, vol.127, issue.1, pp.1-11, 1999.
DOI : 10.1007/s002210050768

J. Tremble, N. Morgenthaler, and A. Vlug, Human B Cells Secreting Immunoglobulin G to Glutamic Acid Decarboxylase-65 from a Nondiabetic Patient with Multiple Autoantibodies and Graves' Disease: A Comparison with Those Present in Type 1 Diabetes, Journal of Clinical Endocrinology & Metabolism, vol.82, issue.8, pp.822664-2670, 1997.
DOI : 10.1210/jc.82.8.2664

C. Padoa, J. Banga, and A. Madec, Recombinant Fabs of Human Monoclonal Antibodies Specific to the Middle Epitope of GAD65 Inhibit Type 1 Diabetes-Specific GAD65Abs, Diabetes, vol.52, issue.11, pp.522689-2695, 2003.
DOI : 10.2337/diabetes.52.11.2689

M. Truckenmiller, M. Vawter, and P. Zhang, AF5, a CNS Cell Line Immortalized with an N-Terminal Fragment of SV40 Large T: Growth, Differentiation, Genetic Stability, and Gene Expression, Experimental Neurology, vol.175, issue.2, pp.318-337, 2002.
DOI : 10.1006/exnr.2002.7898

M. Truckenmiller, C. Tornatore, and R. Wright, A truncated SV40 large T antigen lacking the p53 binding domain overcomes p53-induced growth arrest and immortalizes primary mesencephalic cells, Cell and Tissue Research, vol.291, issue.2, pp.175-189, 1998.
DOI : 10.1007/s004410050989

J. Sanchez, D. Crooks, and C. Lee, GABAergic lineage differentiation of AF5 neural progenitor cells in vitro, Cell and Tissue Research, vol.767, issue.1, pp.1-8, 2006.
DOI : 10.1007/s00441-005-0094-z

C. Hampe, P. Lundgren, and T. L. , A novel monoclonal antibody specific for the N-terminal end of GAD65, Journal of Neuroimmunology, vol.113, issue.1, pp.63-71, 2001.
DOI : 10.1016/S0165-5728(00)00423-9

J. Storey and R. Tibshirani, Statistical significance for genomewide studies, Proceedings of the National Academy of Sciences, vol.100, issue.16, pp.9440-9445, 2003.
DOI : 10.1073/pnas.1530509100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC170937

J. Storey, Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.73, issue.1, pp.187-205, 2004.
DOI : 10.1016/S0378-3758(99)00041-5

J. Schmahmann and J. Sherman, The cerebellar cognitive affective syndrome, Brain, vol.121, issue.4, pp.561-579, 1998.
DOI : 10.1093/brain/121.4.561

J. Schmahmann and D. Caplan, Cognition, emotion and the cerebellum, Brain, vol.129, issue.2, pp.290-292, 2006.
DOI : 10.1093/brain/awh729

J. Schmahmann, Disorders of the Cerebellum: Ataxia, Dysmetria of Thought, and the Cerebellar Cognitive Affective Syndrome, The Journal of Neuropsychiatry and Clinical Neurosciences, vol.16, issue.3
DOI : 10.1176/jnp.16.3.367

L. Mandolesi, M. Leggio, F. Spirito, and L. Petrosini, Cerebellar contribution to spatial event processing: do spatial procedures contribute to formation of spatial declarative knowledge?, European Journal of Neuroscience, vol.63, issue.9, pp.2618-2626, 2003.
DOI : 10.1037//0033-2909.83.3.482

L. Mandolesi, M. Leggio, A. Graziano, P. Neri, and L. Petrosini, Cerebellar contribution to spatial event processing: involvement in procedural and working memory components, European Journal of Neuroscience, vol.98, issue.12, pp.2011-2022, 2001.
DOI : 10.1046/j.0953-816x.2001.01819.x

M. Steinlin, M. Styger, and E. Boltshauser, Cognitive impairments in patients with congenital nonprogressive cerebellar ataxia, Neurology, vol.53, issue.5, pp.966-973, 1999.
DOI : 10.1212/WNL.53.5.966

S. Torriero, M. Oliveri, and G. Koch, Cortical networks of procedural learning: Evidence from cerebellar damage, Neuropsychologia, vol.45, issue.6, pp.1208-1214, 2007.
DOI : 10.1016/j.neuropsychologia.2006.10.007

D. Cutuli, S. Rossi, and L. Burello, Before or after does it matter? Different protocols of environmental enrichment differently influence motor, synaptic and structural deficits of cerebellar origin, Neurobiology of Disease, vol.42, issue.1, pp.9-20, 2011.
DOI : 10.1016/j.nbd.2010.12.007

G. Vega-flores, S. Rubio, and M. Jurado-parras, Cereb Cortex: The GABAergic Septohippocampal Pathway Is Directly Involved in Internal Processes Related to Operant Reward Learning, 2013.

H. Mitoma, K. Ishida, M. Shizuka-ikeda, and H. Mizusawa, Dual impairment of GABAA- and GABAB-receptor-mediated synaptic responses by autoantibodies to glutamic acid decarboxylase, Journal of the Neurological Sciences, vol.208, issue.1-2, pp.51-56, 2003.
DOI : 10.1016/S0022-510X(02)00423-9

K. Ishida, H. Mitoma, and H. Mizusawa, Reversibility of cerebellar GABAergic synapse impairment induced by anti-glutamic acid decarboxylase autoantibodies, Journal of the Neurological Sciences, vol.271, issue.1-2, pp.186-190, 2008.
DOI : 10.1016/j.jns.2008.04.019

S. Vulliemoz, G. Vanini, A. Truffert, C. Chizzolini, and M. Seeck, Epilepsy and cerebellar ataxia associated with anti-glutamic acid decarboxylase antibodies, Journal of Neurology, Neurosurgery & Psychiatry, vol.78, issue.2, pp.187-189, 2007.
DOI : 10.1136/jnnp.2006.089268

V. Nociti, G. Frisullo, and T. Tartaglione, Refractory generalized seizures and cerebellar ataxia associated with anti-GAD antibodies responsive to immunosuppressive treatment, European Journal of Neurology, vol.49, issue.1, p.5, 2010.
DOI : 10.1111/j.1468-1331.2009.02839.x

V. Lev-ram, L. Makings, P. Keitz, J. Kao, and R. Tsien, Long-term depression in cerebellar Purkinje neurons results from coincidence of nitric oxide and depolarization-induced Ca2+ transients, Neuron, vol.15, issue.2, pp.407-415, 1995.
DOI : 10.1016/0896-6273(95)90044-6

D. Angelo, E. Rossi, P. Gall, and D. , Long-term potentiation of synaptic transmission at the mossy fiber-granule cell relay of cerebellum, Prog Brain Res, vol.148, pp.69-80, 2005.

O. Arancio, M. Kiebler, and C. Lee, Nitric Oxide Acts Directly in the Presynaptic Neuron to Produce Long-Term Potentiationin Cultured Hippocampal Neurons, Cell, vol.87, issue.6, pp.1025-1035, 1996.
DOI : 10.1016/S0092-8674(00)81797-3

C. Holscher, Nitric oxide, the enigmatic neuronal messenger: its role in synaptic plasticity, Trends in Neurosciences, vol.20, issue.7, pp.298-303, 1997.
DOI : 10.1016/S0166-2236(97)01065-5

G. Garcia-arenas, V. Ramirez-amaya, and I. Balderas, Cognitive deficits in adult rats by lead intoxication are related with regional specific inhibition of cNOS, Behavioural Brain Research, vol.149, issue.1, pp.49-59, 2004.
DOI : 10.1016/S0166-4328(03)00195-5

J. Torres, J. Assuncao, and J. Farias, NADPH-diaphorase histochemical changes in the hippocampus, cerebellum and striatum are correlated with different modalities of exercise and watermaze performances, Experimental Brain Research, vol.277, issue.96, pp.292-304, 2006.
DOI : 10.1007/s00221-006-0549-9

D. Maur, C. Romero, B. Burdet, M. Palumbo, and M. Zorrilla-zubilete, Prenatal stress induces alterations in cerebellar nitric oxide that are correlated with deficits in spatial memory in rat???s offspring, Neurochemistry International, vol.61, issue.8, pp.611294-1301
DOI : 10.1016/j.neuint.2012.09.006