L. Riou, A. Broisat, J. Dimastromatteo, G. Pons, D. Fagret et al., Pre-Clinical and Clinical Evaluation of Nuclear Tracers for the Molecular Imaging of Vulnerable Atherosclerosis: An Overview, Current Medicinal Chemistry, vol.16, issue.12, pp.1499-511, 2009.
DOI : 10.2174/092986709787909596

URL : https://hal.archives-ouvertes.fr/inserm-00375348

M. Vosjan, L. Perk, R. Roovers, G. Visser, M. Stigter-van-walsum et al., Facile labelling of an anti-epidermal growth factor receptor Nanobody with 68Ga via a novel bifunctional desferal chelate for immuno-PET, European Journal of Nuclear Medicine and Molecular Imaging, vol.83, issue.Suppl 1, pp.753-63, 2011.
DOI : 10.1007/s00259-010-1700-1

L. Gainkam, L. Huang, V. Caveliers, M. Keyaerts, S. Hernot et al., Comparison of the Biodistribution and Tumor Targeting of Two 99mTc-Labeled Anti-EGFR Nanobodies in Mice, Using Pinhole SPECT/Micro-CT, Journal of Nuclear Medicine, vol.49, issue.5, pp.788-95, 2008.
DOI : 10.2967/jnumed.107.048538

I. Vaneycken, J. Govaert, C. Vincke, V. Caveliers, T. Lahoutte et al., In Vitro Analysis and In Vivo Tumor Targeting of a Humanized, Grafted Nanobody in Mice Using Pinhole SPECT/Micro-CT, Journal of Nuclear Medicine, vol.51, issue.7, pp.1099-106, 2010.
DOI : 10.2967/jnumed.109.069823

T. Lahoutte and V. Caveliers, Pre-clinical screening of anti-HER2 Nanobodies for molecular imaging of breast cancer, FASEB J, vol.25, pp.2433-2479, 2011.

R. Ross, Atherosclerosis--an inflammatory disease, N Engl J Med, vol.340, pp.115-141, 1999.

Y. Huo and K. Ley, Adhesion molecules and atherogenesis, Acta Physiologica Scandinavica, vol.101, issue.1, pp.35-43, 2001.
DOI : 10.1002/(SICI)1521-4141(199902)29:02<700::AID-IMMU700>3.0.CO;2-1

L. Osborn, C. Hession, R. Tizard, C. Vassallo, S. Luhowskyj et al., Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes, Cell, vol.59, issue.6, pp.1203-1214, 1989.
DOI : 10.1016/0092-8674(89)90775-7

V. Fuster, P. Moreno, Z. Fayad, R. Corti, and J. Badimon, Atherothrombosis and High-Risk Plaque, Journal of the American College of Cardiology, vol.46, issue.6, pp.937-54, 2005.
DOI : 10.1016/j.jacc.2005.03.074

K. Iiyama, L. Hajra, M. Iiyama, H. Li, M. Dichiara et al., Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formationVascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis Neovascular expression of Eselectin , intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content Molecular imaging of vascular cell adhesion molecule-1 expression in experimental atherosclerotic plaques with radiolabelled B2702-p, Circ Res. J Clin Invest. Circulation. Eur J Nucl Med Mol Imaging, vol.934, issue.93, pp.215-219945, 1993.

M. Nahrendorf, E. Keliher, P. Panizzi, H. Zhang, S. Hembrador et al., 18F-4V for PET???CT Imaging of VCAM-1 Expression in Atherosclerosis, JACC: Cardiovascular Imaging, vol.2, issue.10
DOI : 10.1016/j.jcmg.2009.04.016

B. Kaufmann, J. Sanders, C. Davis, A. Xie, P. Aldred et al., Molecular Imaging of Inflammation in Atherosclerosis With Targeted Ultrasound Detection of Vascular Cell Adhesion Molecule-1, Circulation, vol.116, issue.3, pp.276-84, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.684738

A. Ghahroudi, M. Desmyter, A. Wyns, L. Hamers, R. Muyldermans et al., Selection and identification of single domain antibody fragments from camel heavy-chain antibodies, FEBS Letters, vol.15, issue.3, pp.521-527, 1997.
DOI : 10.1016/S0014-5793(97)01062-4

D. Saerens, M. Pellis, R. Loris, E. Pardon, M. Dumoulin et al., Identification of a Universal VHH Framework to Graft Non-canonical Antigen-binding Loops of Camel Single-domain Antibodies, Journal of Molecular Biology, vol.352, issue.3, pp.597-607, 2005.
DOI : 10.1016/j.jmb.2005.07.038

J. Levesque, Y. Takamatsu, S. Nilsson, D. Haylock, and P. Simmons, Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor, Blood, vol.98, issue.5, pp.1289-97, 2001.
DOI : 10.1182/blood.V98.5.1289

M. Borrello and R. Phipps, Differential Thy-1 Expression by Splenic Fibroblasts Defines Functionally Distinct Subsets, Cellular Immunology, vol.173, issue.2, pp.198-206, 1996.
DOI : 10.1006/cimm.1996.0268

R. Boscacci, F. Pfeiffer, K. Gollmer, A. Sevilla, A. Martin et al., Comprehensive analysis of lymph node stroma-expressed Ig superfamily members reveals redundant and nonredundant roles for ICAM-1, ICAM-2, and VCAM-1 in lymphocyte homing, Blood, vol.116, issue.6, pp.915-940, 2010.
DOI : 10.1182/blood-2009-11-254334

A. Lepique, S. Palencia, H. Irjala, and H. Petrie, Characterization of Vascular Adhesion Molecules that may Facilitate Progenitor Homing in the Post-natal Mouse Thymus, Clinical and Developmental Immunology, vol.10, issue.1, pp.27-33, 2003.
DOI : 10.1080/10446670310001598492

D. Salomon, L. Crisa, C. Mojcik, J. Ishii, G. Klier et al., Vascular cell adhesion molecule-1 is expressed by cortical thymic epithelial cells and mediates thymocyte adhesion. Implications for the function of alpha4beta1 (VLA4) integrin in T-cell development, Blood, vol.89, pp.2461-71, 1997.

K. Schweitzer, A. Drager, P. Van-der-valk, S. Thijsen, A. Zevenbergen et al., Constitutive expression of E-selectin and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues Antigen targeted to secondary lymphoid organs via vascular cell adhesion molecule (VCAM) enhances an immune response, Am J Pathol. Vaccine, vol.14821, issue.25, pp.165-752115, 1996.

K. Jacobsen, J. Kravitz, P. Kincade, and D. Osmond, Adhesion receptors on bone marrow stromal cells: in vivo expression of vascular cell adhesion molecule-1 by reticular cells and sinusoidal endothelium in normal and gamma-irradiated mice, Blood, vol.87, pp.73-82, 1996.

M. Yin, L. Zhang, X. Sun, L. Mao, and J. Pan, Lack of apoE causes alteration of cytokines expression in young mice liver, Molecular Biology Reports, vol.26, issue.4, pp.2049-54, 2010.
DOI : 10.1007/s11033-009-9660-x

Y. Kuge, N. Takai, Y. Ogawa, T. Temma, Y. Zhao et al., Imaging with radiolabelled anti-membrane type 1 matrix metalloproteinase (MT1-MMP) antibody: potentials for characterizing atherosclerotic plaques, European Journal of Nuclear Medicine and Molecular Imaging, vol.28, issue.11, pp.2093-104, 2010.
DOI : 10.1007/s00259-010-1521-2

URL : http://doi.org/10.1007/s00259-010-1521-2

J. Rudd, E. Warburton, T. Fryer, H. Jones, J. Clark et al., Imaging Atherosclerotic Plaque Inflammation With [18F]-Fluorodeoxyglucose Positron Emission Tomography, Circulation, vol.105, issue.23, pp.2708-2719, 2002.
DOI : 10.1161/01.CIR.0000020548.60110.76

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.489.3036

J. Wykrzykowska, S. Lehman, G. Williams, J. Parker, M. Palmer et al., Imaging of Inflamed and Vulnerable Plaque in Coronary Arteries with 18F-FDG PET/CT in Patients with Suppression of Myocardial Uptake Using a Low-Carbohydrate, High-Fat Preparation, Journal of Nuclear Medicine, vol.50, issue.4, pp.563-571, 2009.
DOI : 10.2967/jnumed.108.055616

I. Laitinen, P. Marjamaki, M. Haaparanta, N. Savisto, V. Laine et al., Non-specific binding of [18F]FDG to calcifications in atherosclerotic plaques: experimental study of mouse and human arteries, European Journal of Nuclear Medicine and Molecular Imaging, vol.34, issue.12, pp.1461-1468, 2006.
DOI : 10.1007/s00259-006-0159-6

F. Van-bockstaele, J. Holz, and H. Revets, The development of nanobodies for therapeutic applications, Curr Opin Investig Drugs, vol.10, pp.1212-1236, 2009.

S. Oliveira, G. Van-dongen, M. Stigter-van-walsum, R. Roovers, J. Stam et al., Rapid Visualization of Human Tumor Xenografts through Optical Imaging with a Near-infrared Fluorescent Anti-Epidermal Growth Factor Receptor Nanobody [Epub ahead of print] 35Nanobody-coupled microbubbles as novel molecular tracer Small unilamellar vesicles: a platform technology for molecular imaging of brain tumors Improved tumor targeting of anti-epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology, Mol Imaging J Control Release Nanotechnology Epub Tijink BM Mol Cancer Ther, vol.227, issue.37, pp.2288-97, 2008.