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Abstract

Background: The endothelial specific cell-cell adhesion molecule, VE-cadherin, modulates barrier function and

vascular homeostasis. In this context, we have previously characterized that VEGF (vascular endothelial growth

factor) leads to VE-cadherin phosphorylation, β-arrestin2 recruitment and VE-cadherin internalization in mouse

endothelial cells. However, exactly how this VE-cadherin/β-arrestin complex contributes to VEGF-mediated

permeability in human endothelial cells remains unclear. In this study, we investigated in-depth the VE-cadherin/

β-arrestin interactions in human endothelial cells exposed to VEGF.

Findings: First, we demonstrated that VEGF induces VE-cadherin internalization in a clathrin-dependent manner in

human umbilical vein endothelial cells (HUVEC). In addition to the classical components of endocytic vesicles,

β-arrestin1 was recruited and bound to phosphorylated VE-cadherin. Molecular mapping of this interaction

uncovered that the C-terminus tail of β-arrestin1, that comprises amino acids 375 to 418, was sufficient to directly

interact with the phosphorylated form of VE-cadherin. Interestingly, the expression of the C-terminus tail of

β-arrestin1 induced loss of surface exposed-VE-cadherin, promoted monolayer disorganization and enhanced

permeability. Finally, this effect relied on decreased VE-cadherin expression at the transcriptional level, through

inhibition of its promoter activity.

Conclusions: Altogether, our results demonstrate that β-arrestin1 might play multiple functions collectively

contributing to endothelial barrier properties. Indeed, in addition to a direct implication in VE-cadherin endocytosis,

β-arrestin1 could also control VE-cadherin transcription and expression. Ultimately, understanding the molecular

mechanisms involved in VE-cadherin function might provide therapeutic tools for many human diseases where the

vascular barrier is compromised.
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Findings

The endothelial cells that form blood vessels ensure selec-

tive exchanges between plasma and irrigated tissues. Mac-

romolecules and cells larger than 3 nm use the paracellular

pathway, chiefly orchestrated through cell-cell junctions [1].

Endothelial junction closing and opening maintain vascular

integrity and homeostasis, and coordinate vascular perme-

ability. Adjacent endothelial cells are connected through

adherens and tight junctions [2]. VE-cadherin (vascular

endothelial cadherin) is the adherens junction protein ex-

clusively expressed in vessels [3]. Besides its key role during

vascular network formation, VE-cadherin guarantees bar-

rier integrity and modulates endothelial plasticity in adult-

hood [4-7]. Many angiogenic molecules can destabilize the

organization of intercellular junctions, causing endothelial

barrier opening [8-13]. We previously described that vascu-

lar endothelial growth factor (VEGF)-induced permeability

operates through a signaling pathway involving the sequen-

tial activation of Src/Vav2/Rac/PAK [9]. This molecular

cascade culminates in VE-cadherin phosphorylation on the
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highly conserved serine 665 (S665) [9]. This S665 phos-

phorylation marshals VE-cadherin internalization and sub-

sequent interaction with β-arrestin2, a molecule known for

its role in endocytosis of activated membrane receptors [9].

VE-cadherin internalization appears to be a key mechanism

that controls the overall organization of endothelial mono-

layers in vitro and vascular organization in vivo [9,14-19].

However, how the VE-cadherin/β-arrestin complex is inter-

nalized into clathrin-coated vesicles to ultimately cause

weakening of adherens junctions, loss of barrier integrity

and increased vascular permeability is not yet documented.

Here we extend our previous findings [9,19] by demons-

trating that, in addition to β-arrestin2, phosphorylated

VE-cadherin recruits β-arrestin1. We further mapped a re-

gion in the β-arrestin1 C-terminus tail comprising the resi-

dues 375 to 418 essential for this interaction. In addition,

this domain contributes to the loss of barrier integrity

through reduction of VE-cadherin promoter activity.

VEGF stimulation leads to VE-cadherin phospho-

rylation, β-arrestin2 recruitment and VE-cadherin intern-

alization in murine cells [9]. To determine whether

human endothelial cells also co-opt this mechanism, we

first performed VE-cadherin internalization assays in hu-

man umbilical vein endothelial cells (HUVEC) exposed to

VEGF (Additional file 1). As early as 15 min, we observed

that internalized VE-cadherin vesicles seemed to follow

microtubule routes within the cell, in regions where

actin filaments were also aligned (Figure 1A). The three-

dimensional representation also indicated that VE-

cadherin-containing vesicles accumulated in the peri-

nuclear zone, where they could have been transported

along microtubules (Figure 1B). VEGF also promoted VE-

cadherin internalization in confluent monolayers, al-

though to a lesser extent and with a different pattern

(Additional file 2: Figure S1A-B). To further characterize

the nature of endocytosed VE-cadherin structures, confocal

analysis of internalized VE-cadherin and organelle markers

was performed (Figure 1C, Additional file 2: Figure S1C-D).

In VEGF-stimulated cells, internalized VE-cadherin co-

localized with clathrin-coated vesicles. Accordingly, inter-

nalized VE-cadherin co-labeled with adaptin α from the

AP2 complex, which is involved in the formation of

clathrin-coated pits, and with rab5, a typical marker for

early endosomes (Figure 1C). By contrast, no overlap was

detected with cholera toxin, which illuminates raft mem-

brane microdomains, caveolin, an essential structural pro-

tein for caveolae, or rab11 from the recycling endosomes

(Additional file 2: Figure S1C-D). To further investigate the

role of the clathrin/AP2-dependent endocytic machinery in

this process, endogenous levels of adaptin α were silenced

Figure 1 VE-cadherin is internalized in clathrin coated-vesicles. (A) HUVEC were cultivated on collagen-coated slides, serum deprived,

subjected to VE-cadherin internalization assay as described in [18] and stimulated with VEGF (50 ng/ml, 15 min). Cells were fixed and stained for

VE-cadherin (iVEC, green), microtubule (red) and actin (purple). Cells were then analyzed by confocal microscopy. Scale bar: 10 μm. (B) VE-cadherin

staining was performed as described above, analyzed by confocal microscopy and by 3D reconstitution using IMARIS software. Nuclei are presented in

blue (DAPI) and iVEC in green. Scale bar: 10 μm. (C) Confocal analysis of iVEC (green), together with clathrin heavy chain (HC), adaptin α or rab5 (red)

in HUVEC stimulated with VEGF (50 ng/ml, 15 min). Scale bar: 10 μm. (D-F) HUVEC received adaptin α-targeting (AP2si) and non-silencing (nsi)

duplexes. Total cell lysates were analyzed by western-blot three days later for adaptin α and Tubulin protein expression levels. Confocal analysis of iVEC

(green) was performed in the absence (Ctrl) or presence of VEGF (50 ng/ml, 15 min). Graph represents the mean ± s.e.m. of the percentage of cells

with iVEC staining; n >300; T-test: ** p < 0.01. Scale bar: 10 μm. All panels are representative of at least 3 independent experiments.
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by RNA interference (Figure 1D). In these settings, VEGF-

elicited VE-cadherin internalization was highly reduced

(Figure 1E-F). Our data clearly establish that short-term

VEGF stimulation induces VE-cadherin endocytosis in

clathrin-coated vesicles in human endothelial cells.

Because β-arrestin1 and β-arrestin2 share redundant

functions, we next asked whether β-arrestin1 was similarly

involved in VE-cadherin internalization [9,19]. In response

to VEGF, β-arrestin1-CFP drastically evolved from a

membrane/cytosol diffused localization to a vesicular pat-

tern, which co-localized withVE-cadherin-containing vesi-

cles (Figure 2A, Additional file 2: Figure S1D). Co-

immunoprecipitation experiments further showed that

VEGF treatment increased a modest but significant VE-

Figure 2 β-arrestin1 C-terminus tail binds to S665D VE-cadherin mutant. (A) HUVEC were transfected with CFP-myc-tagged β-arrestin1

(CFP-βarr1, green). After serum deprivation, cells were subjected to VE-cadherin internalization assay, stimulated with VEGF (50 ng/ml, 15 min)

and fixed for staining (iVEC, red). Cells were analyzed by confocal microscopy. Scale bar: 10 μm. (B-D) After overnight serum starvation, three

day-old HUVEC were stimulated with VEGF (50 ng/ml) for the indicated times. (B-C) The anti-VE-cadherin (VEC) and anti-β-arrestin1/2 (βarr1/2)

immunoprecipitated (IP) fractions were analyzed by western-blot. Densitometry analysis was done with Image J software. T-test: * p < 0.05.

(D) Total cell lysates (TCL) were analyzed by western-blot for S665 phosphorylation of VE-cadherin (pVEC) and total VEC. (E) HEK-293T cells were

co-transfected with CFP-myc-tagged β-arrestin1 (myc-βarr1) together with control plasmid (−), wild-type (WT), non-phosphorylable (SV) or

phosphomimetic (SD) VE-cadherin mutants. TCL and IP fractions were analyzed by western-blot as indicated. (F) HEK-293T cells were

transfected with CFP-myc-β-arrestin1 (myc-βarr1, +) or CFP-myc control plasmid (−). Cellular extract was incubated with recombinant histidine-

fused VE-cadherin intracellular domain (ICD), either WT or SD. TCL and pull-down fractions were analyzed by western-blot as indicated.

(G) Schematic representation of human β-arrestin1, with two arrestin (arr) domains. The C-terminus tail (375–418) comprises an AP2 binding

site (LIE and RXR in blue) and two phosphorylation sites (in red). (H-J) HEK-293T cells were co-transfected with VEC SD mutant together with

control plasmid (−), full-length and deleted forms of myc-βarr1. IP fractions and TCL were analyzed by western-blot. (J) HEK-293T cells were

co-transfected with VEC SD mutant together with a constant amount of full-length myc-βarr1 (**) and increasing concentrations of CFP-myc-tagged

β-arrestin1 C-terminus tail comprising amino acids 475–418 (myc-C-tail, *). TCL and IP fractions were analyzed by western-blot. All panels are

representative of at least 3 independent experiments.
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cadherin binding to β-arrestin1 (Figure 2B-C). This was

accompanied by enhanced VE-cadherin phospho-

rylation on residue S665 (Figure 2D). We then explored

whether VE-cadherin serine phosphorylation impacts

on β-arrestin1 recruitment by developing an ectopic

expression system in human embryonic kidney cells

(HEK-293T). We found that the interaction between

β-arrestin1 and a non-phosphorylable mutant (SV) of

VE-cadherin was much more limited than with the wild-

type (WT) form of VE-cadherin (Figure 2E). By contrast,

β-arrestin1 massively bound to a phosphomimetic mutant

(SD) of VE-cadherin. Combined, this data strongly sug-

gests that VE-cadherin serine phosphorylation enhances

β-arrestin1 recruitment. We next tested the ability of the

recombinant WT or SD versions of the intracellular do-

main of VE-cadherin to pull-down cellular β-arrestin1.

Again, SD VE-cadherin strongly bound to β-arrestin1 when

compared to WT VE-cadherin (Figure 2F). To further map

this association, co-immunoprecipitations were performed

in HEK-293T cells co-transfected with SD VE-cadherin and

deletion mutants of β-arrestin1 (Figure 2G). While SD

VE-cadherin barely bound to β-arrestin1 mutants lacking

its C-terminus tail (375–418 amino acids), it efficiently

interacted with all deletion mutants that retained this re-

gion (Figure 2H). Hence, we defined a 43 amino acid-

containing domain required for VE-cadherin/β-arrestin1

interaction. Consistent with this finding, the C-terminus

tail of β-arrestin1 was sufficient to interact with SD

VE-cadherin (Figure 2I), and efficiently outcompeted

full-length β-arrestin1 binding (Figure 2J).

We further investigated the effect of β-arrestin1 C-

terminus tail enforced expression in HUVEC. To this end,

we engineered HUVEC cells stably expressing β-arrestin1

C-terminus tail (C-tail), along with empty plasmid (mock),

full-length (FL) and deleted C-tail (ΔC-tail). The stable

expression of CFP-myc-tagged β-arrestin1 constructs

was validated by flow cytometry and confocal analysis

(Additional file 3: Figure S2A-B). Of note, C-tail prefer-

entially accumulated in the nucleus (Additional file 3:

Figure S2B). Flow cytometric analysis further unveiled

Figure 3 β-arrestin1 C-terminus tail induces loss of barrier integrity and VE-cadherin down-regulation. (A) VE-cadherin surface expression

was tested by flow cytometry in HUVEC that stably expressed mock (pink) or CFP-myc-tagged β-arrestin1 full-length (1–418, green), ΔC (1–374,

orange) and C-tail (375–418, blue). Isotype control (Ig) is shown in grey. (B) Mock and C-tail HUVEC were subjected to VE-cadherin internalization assay

(iVEC) and analyzed by confocal microscopy. Graph represents the mean + s.e.m. of the percentage of cells with iVEC staining; n >300; T-test:

*** p < 0.001. (C) Three day-old mock and C-tail HUVEC were stained for VE-cadherin (VEC), β-catenin (β-cat) and p120-catenin (p120) and analyzed by

confocal microscopy. Scale bar: 10 μm. (D) Relative permeability was measured in mock, FL, ΔC and C-tail HUVEC by the fluorescence of 40 kDa FITC-

dextran passage. Graph shows the mean ± s.e.m. of 3 independent experiments. Two-way ANOVA test: *** p < 0.001. (E-F) Protein and RNA expression

of indicated targets were tested using western-blot (E) and RT-PCR (F) in mock and C-tail HUVEC. Cad5: cadherin-5, VE-cadherin; Cad2: cadherin-2,

N-cadherin. Densitometry analysis was done with Image J software. T-test: * p < 0.05. (G-H) HUVEC were transfected with luciferase reporter for VE-

cadherin promoter activity and Renilla. (G) They also received a control CFP-myc plasmid (mock) and the CFP-myc-tagged FL, ΔC and C-tail β-arrestin1.

Alternatively, they received pGFP (mock) and GFP-tagged β-arrestin2 comprising amino acids 1–410 (FL), 1–359 (ΔC) and 317–410 (C-tail). (H) Two

days prior plasmid transfection, cells were treated with non-silencing duplexes (nsi) and siRNA targeting βarr1, βarr2, or both (βarr1/2). Graphs show

the mean ± s.e.m. of 3 independent experiments. Two-way and one-way ANOVA test: ** p < 0.01; * p < 0.05. All panels are representative of at least 3

independent experiments.
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that surface-exposed VE-cadherin was minimized in C-tail,

but not in FL and ΔC-expressing HUVEC (Figure 3A). In

agreement with this data, VE-cadherin internalization was

not observed in C-tail HUVEC, while VEGF triggered a

four-fold increase in VE-cadherin endocytosis in control

cells (Figure 3B). These results prompted us to analyze

adherens junction organization by confocal microscopy.

Corroborating our data, VE-cadherin, p120 and β-catenin

appeared less cohesively organized at the cell-cell junc-

tions in C-tail HUVEC, where gaps, zigzags and weaker

VE-cadherin staining were observed, resulting in an overall

alteration of endothelial monolayer architecture (Figure 3C).

Importantly, this impacted on endothelial permeability as

measured in vitro with a 40 kDa fluorescent tracer

(Figure 3D). Indeed, C-tail cells exhibited higher basal

endothelial permeability, which could not be further in-

creased by VEGF, when compared to mock, FL and ΔC

HUVEC (Figure 3D). To gain insights into the mechanisms

involved, we investigated the protein expression levels of

adherens junction molecules in C-tail HUVEC. Interest-

ingly, VE-cadherin protein expression was diminished in

C-tail cells, while β-catenin, p120-catenin and β-arrestin1/2

remained unchanged (Figure 3E). Following these observa-

tions, we examined mRNA levels of VE-cadherin (Cad5),

N-cadherin (Cad2) and other endothelial adhesive mole-

cules, such as ICAM1 and VCAM1 (Figure 3F). Our data

show that VE-cadherin mRNA was reduced by a quarter

in C-tail cells, arguing in favor of a transcriptional effect

of the β-arrestin1 C-terminus tail. The lack of change in

N-cadherin mRNA suggests that it cannot substitute

for VE-cadherin. Interestingly, whereas TNFα challenge

strongly increased ICAM1 and VCAM1 expression con-

comitantly with AP1 and NF-κB activation, neither of

these pathways, nor p38 phosphorylation were turned on

in C-tail expressing cells (Additional file 4: Figure S3A-D).

Finally, the effect of the β-arrestin1 C-terminus tail on the

activity of the VE-cadherin promoter [20] was tested in

HeLa and HUVEC cells. The β-arrestin1 C-terminus

tail expression resulted in a significant decrease in

VE-cadherin promoter activity (Figure 3G, Additional

file 5: Figure S4A) in both cell lines, although milder in

HUVEC. This is most likely due to differences between

endothelial and non-endothelial cells [20]. This prompted

us to test the possibility that the C-terminus tail of

β-arrestin1 binds to the VE-cadherin promoter. Indeed,

chromatin immunoprecipitation experiments showed that

β-arrestin1 C-tail interacted with the proximal region of

the VE-cadherin promoter (Additional file 3: Figure S2C).

Interestingly, the expression of the corresponding con-

structs in β-arrestin2 was unable to alter VE-cadherin pro-

moter activity (Figure 3G, Additional file 5: Figure S4A).

This is in agreement with studies showing a predominant

role for β-arrestin1 in transcriptional regulation, com-

pared to β-arrestin2, which is actively exported from the

nucleus [21,22]. Conversely, reducing β-arrestin1, but

not β-arrestin2, expression with siRNA resulted in ele-

vated VE-cadherin promoter activity (Figure 3H, Add-

itional file 5: Figure S4B-C). Hence, the effects of

endogenous β-arrestin1 siRNA on VE-cadherin promoter

cannot mirror its overexpression. Indeed, β-arrestin1 is

expressed in a closed conformation in which the

C-terminus tail is masked [23]. Upon activation, con-

formational changes allow transition to an open state,

unleashing the C-tail. This mechanism has been pro-

posed to regulate β-arrestin1 functions [23,24]. In agree-

ment, ectopic C-tail but not full-length β-arrestin1

overexpression curtailed VE-cadherin promoter activity.

Altogether, our data extend our previous findings [9,19]

by demonstrating that VEGF induces the recruitment of

β-arrestin1 in the course of VE-cadherin internalization

in clathrin-containing vesicles. Molecular mapping of

VE-cadherin/β-arrestin1 interaction supports the idea of

a specific and direct interaction between the C-terminus

tail of β-arrestin1 and the phospho-mimicking mutant of

VE-cadherin. Additionally, β-arrestin1 C-terminus tail re-

duces VE-cadherin expression through the inhibition of

its promoter activity, suggesting that this multifaceted

protein could control endothelial barrier properties by

several means. Although our study is mainly based on

β-arrestin1 C-terminus tail overexpression, our results

might be therapeutically relevant in the context of path-

ologies exhibiting sustained increase of vascular perme-

ability, especially where endothelial cells are exposed to

aberrant levels of VEGF, such as in cancers.

Additional files

Additional file 1: Methods description.

Additional file 2: Figure S1. Characterization of internalized VE-cadherin.

(A-C) HUVEC were cultivated on collagen-coated slides, either sparse or

confluent, serum deprived (Ctrl), subjected to VE-cadherin internalization

assay and stimulated with VEGF (50 ng/ml, 15 min). Cells were fixed and

stained for VE-cadherin (iVEC, gray) and analyzed by confocal microscopy.

Scale bar: 10 μm. (B) Graph represents the mean ± s.e.m. of the percentage

of cells with iVEC staining; n > 200; T-test: ** p < 0.01. (C) Confocal analysis of

iVEC (green), together with caveolin, cholera toxin (CTX), or rab11 (red).

Scale bar: 10 μm. (D) Pearson’s coefficients were calculated for each

indicated staining with iVEC; n > 10. Panels are representive of 3

independent experiments.

Additional file 3: Figure S2. β-arrestin1 expression and localization.

(A-B) HUVEC were transfected with the indicated CFP-fused β-arrestin1

constructs, and analyzed by flow cytometry (A) and confocal microscopy

(B). Scale bar: 10 μm. Panels are representive of 3 independent

experiments. (C) Chromatin immunoprecipitations (ChIP) were performed

with anti-GFP and preimmune (lg pAb) antibodies on shear cross-linked

chromatin preparation from C-tail HUVEC. Three sets of primers flanking

regions -541/-390, -132/+18 and -785/-670 on cadherin-5 (Cad5, VE-cadherin)

promoter were used. Additional controls included anti-PoIII IP and

premmune (lg mAb) and GADPH primers. Panels are representative of 3

independent experiments.

Additional file 4: Figure S3. Status of inflammatory signaling pathways

in β-arrestin1 C-tail expressing cells. (A) HEK-293 T transfected with

luciferase reporter for the indicated promoter activity (NF-KB and AP1)
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and Renilla, together with mock, full lenght (FL) and C-tail β-arrestin1

(C-tail). Alternatively, cells were treated with the TNFα (10 μg/ml, 6 h).

Graphs shows the mean + s.e.m. of 3 independent experiments,

normalized to Renilla. Two-way ANOVA test: *** p < 0.001. (B) HeLa

transfected with C-tail β-arrestin1 (green) were stained (red) for p65 and

cFos and analyzed by confocal. Alternatively, cells were treated with

TNFα for 1 h. (C) RT-PCR for ICAM1 and VCAM1 was performed in starved

HUVEC (-), treated with TNFα (+, 10 μg/ml,6 h) or expressing C-tail and FL

β-arrestin1. GAPDH serves as an internal control. (D) HEK-293 T (-)

transfected with FL and C-tail β-arrestin1 were analyzed by western-blot

for phosphorylated (p) p38. Anisomycin-treated cells (60 μm, 15 min)

were used as a positive control. Total ERK2 serves as a loading control. All

panels are representive of 3 independent experiments.

Additional file 5: Figure S4. Impact of β-arrestin1 and β-arrestin2 on

VE-cadherin promoter activity. (A-C) HeLa were transfected with luciferase

reporter for VE-cadherin (VEC) promoter activity and Renilla, together

with either, a control CFP-myc plasmid (mock) and CFP-myc-tagged β-

arrestin1 (βarr1) comprising amino acids 317-410 (C-tail). (B-C)

Alternatively, HeLa (B) and HUVEC (C) received non-silencing duplexes

(nsi) and β-arrestin1 (βarr1), β-arrestin2 (βarr2), and β-arrestin1/2 (βarr1/2)-

targeting siRNA. VEC promoter activity was measured in a luciferase-

based assay (B), and siRNA efficiency was evaluated by western-blot (C),

using anti-βarr1 and anti-βarr2 antibodies. Tubulin serves as a loading

control. Graph shows the mean ± s.e.m. of 3 independent experiments.

Two-way and one-way ANOVA tests: ***p < 0.001; ** p < 0.01;* p < 0.05.

Panels are representative of 3 independent experiments.
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