J. Azoury, K. W. Lee, V. Georget, P. Rassinier, B. Leader et al., Spindle Positioning in Mouse Oocytes Relies on a Dynamic Meshwork of Actin Filaments, Current Biology, vol.18, issue.19, pp.1514-1519, 2008.
DOI : 10.1016/j.cub.2008.08.044

J. Azoury, K. W. Lee, V. Georget, P. Hikal, and M. H. Verlhac, Symmetry breaking in mouse oocytes requires transient F-actin meshwork destabilization, Development, vol.138, issue.14, pp.2903-2908, 2011.
DOI : 10.1242/dev.060269

H. A. Benink and W. M. Bement, Concentric zones of active RhoA and Cdc42 around single cell wounds, The Journal of Cell Biology, vol.224, issue.3, pp.429-439, 2005.
DOI : 10.1083/jcb.200212049

A. Bielak-zmijewska, A. Kolano, K. Szczepanska, M. Maleszewski, and E. Borsuk, Cdc42 protein acts upstream of IQGAP1 and regulates cytokinesis in mouse oocytes and embryos, Developmental Biology, vol.322, issue.1, pp.21-32, 2008.
DOI : 10.1016/j.ydbio.2008.06.039

J. L. Cannon, C. M. Labno, G. Bosco, A. Seth, M. H. Mcgavin et al., WASP Recruitment to the T Cell:APC Contact Site Occurs Independently of Cdc42 Activation, Immunity, vol.15, issue.2, pp.249-259, 2001.
DOI : 10.1016/S1074-7613(01)00178-9

G. T. Charras, J. C. Yarrow, M. A. Horton, L. Mahadevan, and T. J. Mitchison, Non-equilibration of hydrostatic pressure in blebbing cells, Nature, vol.11, issue.7040, pp.365-369, 2005.
DOI : 10.1152/ajpcell.00094.2004

J. Condeelis, Life at the Leading Edge: The Formation of Cell Protrusions, Annual Review of Cell Biology, vol.9, issue.1, pp.411-444, 1993.
DOI : 10.1146/annurev.cb.09.110193.002211

X. S. Cui, X. Y. Li, and N. H. Kim, Cdc42 is implicated in polarity during meiotic resumption and blastocyst formation in the mouse, Molecular Reproduction and Development, vol.95, issue.6, pp.785-794, 2007.
DOI : 10.1002/mrd.20571

M. Dasso, T. Seki, Y. Azuma, T. Ohba, and T. Nishimoto, A mutant form of the Ran/TC4 protein disrupts nuclear function in Xenopus laevis egg extracts by inhibiting the RCC1 protein, a regulator of chromosome condensation, EMBO J, vol.13, pp.5732-5744, 1994.

M. Deng, P. Suraneni, R. M. Schultz, and R. Li, The Ran GTPase Mediates Chromatin Signaling to??Control Cortical Polarity during Polar Body Extrusion in Mouse Oocytes, Developmental Cell, vol.12, issue.2, pp.301-308, 2007.
DOI : 10.1016/j.devcel.2006.11.008

M. Deng and R. Li, Sperm Chromatin-Induced Ectopic Polar Body Extrusion in Mouse Eggs after ICSI and Delayed Egg Activation, PLoS ONE, vol.394, issue.9, p.7171, 2009.
DOI : 10.1371/journal.pone.0007171.s001

F. E. Duncan, S. B. Moss, R. M. Schultz, and C. J. Williams, PAR-3 defines a central subdomain of the cortical actin cap in mouse eggs, Developmental Biology, vol.280, issue.1, pp.38-47, 2005.
DOI : 10.1016/j.ydbio.2004.12.034

G. Halet, R. Tunwell, T. Balla, K. Swann, and J. Carroll, The dynamics of plasma membrane PtdIns(4,5)P 2 at fertilization of mouse eggs, J. Cell Sci, vol.115, pp.2139-2149, 2002.

G. Halet and J. Carroll, Rac Activity Is Polarized and Regulates Meiotic Spindle Stability and Anchoring in Mammalian Oocytes, Developmental Cell, vol.12, issue.2, pp.309-317, 2007.
DOI : 10.1016/j.devcel.2006.12.010

S. J. Heasman and A. J. Ridley, Mammalian Rho GTPases: new insights into their functions from in vivo studies, Nature Reviews Molecular Cell Biology, vol.14, issue.9, pp.690-701, 2008.
DOI : 10.1038/nrm2476

J. E. Holt and K. T. Jones, Control of homologous chromosome division in the mammalian oocyte, Molecular Human Reproduction, vol.15, issue.3, pp.139-147, 2009.
DOI : 10.1093/molehr/gap007

S. H. Kim, Z. Li, and D. B. Sacks, E-cadherin-mediated Cell-Cell Attachment Activates Cdc42, Journal of Biological Chemistry, vol.275, issue.47, pp.36999-37005, 2000.
DOI : 10.1074/jbc.M003430200

S. M. Larson, H. J. Lee, P. H. Hung, L. M. Matthews, D. N. Robinson et al., Cortical Mechanics and Meiosis II Completion in Mammalian Oocytes Are Mediated by Myosin-II and Ezrin-Radixin-Moesin (ERM) Proteins, Molecular Biology of the Cell, vol.21, issue.18, pp.3182-3192, 2010.
DOI : 10.1091/mbc.E10-01-0066

H. Li, F. Guo, B. Rubinstein, and R. Li, Actin-driven chromosomal motility leads to symmetry breaking in mammalian meiotic oocytes, Nature Cell Biology, vol.10, issue.11, pp.1301-1308, 2008.
DOI : 10.1038/ncb1788

F. J. Longo and D. Y. Chen, Development of cortical polarity in mouse eggs: Involvement of the meiotic apparatus, Developmental Biology, vol.107, issue.2, pp.382-394, 1985.
DOI : 10.1016/0012-1606(85)90320-3

C. Ma, H. A. Benink, D. Cheng, V. Montplaisir, L. Wang et al., Cdc42 Activation Couples Spindle Positioning to First Polar Body Formation in Oocyte Maturation, Current Biology, vol.16, issue.2, pp.214-220, 2006.
DOI : 10.1016/j.cub.2005.11.067

B. Maro, M. H. Johnson, M. Webb, and G. Flach, Mechanism of polar body formation in the mouse oocyte: an interaction between the chromosomes, the cytoskeleton and the plasma membrane, J. Embryol. Exp. Morphol, vol.92, pp.11-32, 1986.

H. Miki, K. Miura, and T. Takenawa, N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases, EMBO J, vol.15, pp.5326-5335, 1996.

J. Na and M. Zernicka-goetz, Asymmetric Positioning and Organization of the Meiotic Spindle of Mouse Oocytes Requires CDC42 Function, Current Biology, vol.16, issue.12, pp.1249-1254, 2006.
DOI : 10.1016/j.cub.2006.05.023

F. Oceguera-yanez, K. Kimura, S. Yasuda, C. Higashida, T. Kitamura et al., Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis, The Journal of Cell Biology, vol.1, issue.2, pp.221-232, 2005.
DOI : 10.1016/S0968-0004(01)01973-9

S. B. Padrick and M. K. Rosen, Physical Mechanisms of Signal Integration by WASP Family Proteins, Annual Review of Biochemistry, vol.79, issue.1, pp.707-735, 2010.
DOI : 10.1146/annurev.biochem.77.060407.135452

A. C. Perry and M. H. Verlhac, Second meiotic arrest and exit in frogs and mice, EMBO reports, vol.6, issue.3, pp.246-251, 2008.
DOI : 10.1002/jez.1402620312

S. Pfender, V. Kuznetsov, S. Pleiser, E. Kerkhoff, and M. Schuh, Spire-Type Actin Nucleators Cooperate with Formin-2 to Drive Asymmetric Oocyte Division, Current Biology, vol.21, issue.11, pp.955-960, 2011.
DOI : 10.1016/j.cub.2011.04.029

T. D. Pollard and G. G. Borisy, Cellular Motility Driven by Assembly and Disassembly of Actin Filaments, Cell, vol.112, issue.4, pp.453-465, 2003.
DOI : 10.1016/S0092-8674(03)00120-X

K. E. Prehoda, J. A. Scott, R. D. Mullins, and W. A. Lim, Integration of Multiple Signals Through Cooperative Regulation of the N-WASP-Arp2/3 Complex, Science, vol.290, issue.5492, pp.801-806, 2000.
DOI : 10.1126/science.290.5492.801

N. T. Rogers, G. Halet, Y. Piao, J. Carroll, M. S. Ko et al., The absence of a Ca2+ signal during mouse egg activation can affect parthenogenetic preimplantation development, gene expression patterns, and blastocyst quality, Reproduction, vol.132, issue.1, pp.45-57, 2006.
DOI : 10.1530/rep.1.01059

R. Rohatgi, L. Ma, H. Miki, M. Lopez, T. Kirchhausen et al., The Interaction between N-WASP and the Arp2/3 Complex Links Cdc42-Dependent Signals to Actin Assembly, Cell, vol.97, issue.2, pp.221-231, 1999.
DOI : 10.1016/S0092-8674(00)80732-1

R. Rohatgi, H. Y. Ho, and M. W. Kirschner, Mechanism of N-Wasp Activation by Cdc42 and Phosphatidylinositol 4,5-Bisphosphate, The Journal of Cell Biology, vol.15, issue.6, pp.1299-1310, 2000.
DOI : 10.1016/S0960-9822(99)80243-7

C. Sardet, J. Speksnijder, M. Terasaki, and P. Chang, Polarity of the ascidian egg cortex before fertilization, Development, vol.115, pp.221-237, 1992.

M. Schuh and J. Ellenberg, A New Model for Asymmetric Spindle Positioning in Mouse Oocytes, Current Biology, vol.18, issue.24, pp.1986-1992, 2008.
DOI : 10.1016/j.cub.2008.11.022

C. Simerly, G. Nowak, P. De-lanerolle, and G. Schatten, Differential Expression and Functions of Cortical Myosin IIA and IIB Isotypes during Meiotic Maturation, Fertilization, and Mitosis in Mouse Oocytes and Embryos, Molecular Biology of the Cell, vol.9, issue.9, pp.2509-2525, 1998.
DOI : 10.1091/mbc.9.9.2509

S. C. Sun, Z. B. Wang, Y. N. Xu, S. E. Lee, X. S. Cui et al., Arp2/3 Complex Regulates Asymmetric Division and Cytokinesis in Mouse Oocytes, PLoS ONE, vol.301, issue.4, 2011.
DOI : 10.1371/journal.pone.0018392.g007

M. Symons, J. M. Derry, B. Karlak, S. Jiang, V. Lemahieu et al., Wiskott???Aldrich Syndrome Protein, a Novel Effector for the GTPase CDC42Hs, Is Implicated in Actin Polymerization, Cell, vol.84, issue.5, pp.723-734, 1996.
DOI : 10.1016/S0092-8674(00)81050-8

M. H. Verlhac, C. Lefebvre, P. Guillaud, P. Rassinier, and B. Maro, Asymmetric division in mouse oocytes: with or without Mos, Current Biology, vol.10, issue.20, pp.1303-1306, 2000.
DOI : 10.1016/S0960-9822(00)00753-3

M. H. Verlhac, Spindle positioning: going against the actin flow, Nature Cell Biology, vol.95, issue.10, pp.1183-1185, 2011.
DOI : 10.1038/nature02834

S. Vinot, T. Le, B. Maro, and S. Louvet-vallé-e, Two PAR6 Proteins Become Asymmetrically Localized during Establishment of Polarity in Mouse Oocytes, Current Biology, vol.14, issue.6, pp.520-525, 2004.
DOI : 10.1016/j.cub.2004.02.061

S. Yasuda, F. Oceguera-yanez, T. Kato, M. Okamoto, S. Yonemura et al., Cdc42 and mDia3 regulate microtubule attachment to kinetochores, Nature, vol.428, issue.6984, pp.767-771, 2004.
DOI : 10.1038/nature02452

K. Yi, J. R. Unruh, M. Deng, B. D. Slaughter, B. Rubinstein et al., Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes, Nature Cell Biology, vol.269, issue.10, pp.1252-1258, 2011.
DOI : 10.1016/j.jsb.2005.06.002

X. Zhang, C. Ma, A. L. Miller, H. A. Katbi, W. M. Bement et al., Polar Body Emission Requires a RhoA Contractile Ring and Cdc42-Mediated Membrane Protrusion, Developmental Cell, vol.15, issue.3, pp.386-400, 2008.
DOI : 10.1016/j.devcel.2008.07.005