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Clinical trial simulation to evaluate power to
compare the antiviral effectiveness of two
hepatitis C protease inhibitors using nonlinear
mixed effect models: a viral kinetic approach
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Abstract

Background: Models of hepatitis C virus (HCV) kinetics are increasingly used to estimate and to compare in vivo

drug’s antiviral effectiveness of new potent anti-HCV agents. Viral kinetic parameters can be estimated using
non-linear mixed effect models (NLMEM). Here we aimed to evaluate the performance of this approach to precisely
estimate the parameters and to evaluate the type I errors and the power of the Wald test to compare the antiviral
effectiveness between two treatment groups when data are sparse and/or a large proportion of viral load (VL) are
below the limit of detection (BLD).

Methods: We performed a clinical trial simulation assuming two treatment groups with different levels of antiviral
effectiveness. We evaluated the precision and the accuracy of parameter estimates obtained on 500 replication of
this trial using the stochastic approximation expectation-approximation algorithm which appropriately handles BLD
data. Next we evaluated the type I error and the power of the Wald test to assess a difference of antiviral
effectiveness between the two groups. Standard error of the parameters and Wald test property were evaluated
according to the number of patients, the number of samples per patient and the expected difference in antiviral
effectiveness.

Results: NLMEM provided precise and accurate estimates for both the fixed effects and the inter-individual variance
parameters even with sparse data and large proportion of BLD data. However Wald test with small number of
patients and lack of information due to BLD resulted in an inflation of the type I error as compared to the results
obtained when no limit of detection of VL was considered. The corrected power of the test was very high and
largely outperformed what can be obtained with empirical comparison of the mean VL decline using Wilcoxon test.

Conclusion: This simulation study shows the benefit of viral kinetic models analyzed with NLMEM over empirical
approaches used in most clinical studies. When designing a viral kinetic study, our results indicate that the
enrollment of a large number of patients is to be preferred to small population sample with frequent assessments
of VL.

Keywords: Hepatitis C virus, Non-linear mixed effect models, Early viral kinetics, Protease inhibitor, Mathematical
modeling, Direct-acting antiviral agents
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Background
Chronic infection with Hepatitis C Virus (HCV) affects

130–200 million people worldwide [1]. It is the leading

cause of cirrhosis, liver cancer and liver transplants which

result in 350,000 deaths worldwide [2]. HCV is divided

into 6 genotypes, with genotype 1 being the hardest to

treat and the most prevalent in Western countries. The

goal of treatment is to achieve a sustained virologic re-

sponse (SVR), marker of viral eradication, assessed by a

viral load HCV RNA (VL) below the limit of detection

(LOD) six months after cessation of therapy. Until 2011,

the only available treatment was based on weekly injec-

tions of pegylated interferon (peg-IFN) and daily oral riba-

virin (RBV) during 48 weeks, with SVR rate lower than

50% in treatment-naïve HCV genotype 1 patients [3].

In 2011, the approval of two protease inhibitors (PI),

telaprevir and boceprevir, in combination with peg-IFN/

RBV (triple therapy), marked a milestone for anti-HCV

therapy with SVR rates larger than 70% in treatment-naïve

HCV genotype 1 patients [4,5]. Dozens of compounds

targeting different viral proteins are currently in different

stages of clinical trials, raising the expectation that several

IFN-free regimens might be available in the coming years.

Viral kinetic modeling aims at characterizing the main

mechanisms that govern the virologic response to treat-

ment using mathematical models. Following the recom-

mendations of the Food and Drug Administration [6],

this approach has been increasingly used in phase 1/2 of

clinical development to estimate viral kinetic parameters

and to evaluate drug antiviral effectiveness in vivo [7,8].

Parameter estimation is often achieved using non-linear

mixed effect models (NLMEM) [9]. The popularity of

this approach is due to the fact that it optimizes the infor-

mation available by borrowing strength from the whole

sample to provide precise estimation of the parameters,

including covariate effects [10-12]. Moreover it naturally

accounts for the information brought by VL data below

the limit of detection (BLD) and reduces the bias in pa-

rameter estimation as compared to empirical approaches

where BLD data are ignored or assigned to half the LOD

[10,13,14].

So far, viral kinetic models and NLMEM have mostly

been used in phase 1/2 clinical trials with large number

of patients and/or frequent assessment of VL data within

each patient. However in most clinical trials, in particu-

lar when they are not sponsored by the industry, it is

not possible to hospitalize patients and to get frequent

viral load samples. In this challenging context, the ca-

pacity of NLMEM to precisely estimate viral kinetic pa-

rameters is not known. In particular the performance of

tests used to assess the effect of a covariate which have

good asymptotic properties (Wald test, likelihood ratio

test or score test) is not warranted when one is far from

the asymptotic conditions. For instance an inflation of

the type I error has been reported in another clinical

context where data were sparse [15]. With the new po-

tent triple therapies against HCV the amount of infor-

mation available may also be limited by the fact that a

large proportion of VL data are below LOD.

Here our goal was to evaluate the capacity of NLMEM

to precisely estimate the parameters of viral kinetic models

when there is a large proportion of BLD data and a limited

number of data per patient. In particular we aimed to

evaluate by simulation the type I errors and the power of

the Wald test to compare the antiviral effectiveness of two

groups receiving different triple therapies (noted PI-A and

PI-B in the following). Parameter estimation and Wald test

property were evaluated according to the number of pa-

tients, the number of samples per patient and the expected

difference in antiviral effectiveness between the two treat-

ment groups.

Methods
Viral kinetic model

We used the standard biphasic model of HCV kinetics

defined by the following set of differential equations [16]:

dI

dt
¼ bVT−δI

dV

dt
¼ p 1−εð ÞI−cV

8

>

<

>

:

ð1Þ

where T represents the density of target cells that can be

infected by virus measured as HCV RNA (V), with rate

constant b. In the model, infected cells (I) die or lose their

infected state with rate constant δ and produce virions at

constant rate p per cell. Virions are assumed to be cleared

with rate constant c. As it is done usually when consider-

ing short term VL data we assumed that the target cell

level is constant throughout the study period and remains

at its pre-treatment steady state value T0 = cδ/pb [17,18].

Treatment is assumed to reduce the average rate of viral

production per cell from p to p(1–ε), where ε represents

the constant drug effectiveness, i.e., ε = 0.990 implying

the drug is 99% effective in blocking viral production. If all

parameters including treatment effectiveness are constant

over time this model predicts that VL will fall in a biphasic

manner [16], with a rapid first phase of viral decline with

rate approximately equal to c lasting for a couple of days

and with the magnitude viral decline depending on ε, and a

second slower but persistent second phase of viral decline

with rate εδ. Hence, for potent therapies for which ε is close

to 1, the second-phase slope will be approximately δ.

Lastly mathematical analysis shows that if ε is con-

stant, p and b do not intervene in the VL equation and

thus where ignored in the following without loss of gen-

erality [19].
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Statistical model

We assumed an additive error (σ) on the log10 of the VL

observations, i.e., the observed data yij for patient i at

time tij is given by:

yij ¼ f ϕi; tij
� �

þ eij; ð2Þ

ei∼N 0; σ2
� �

; ð3Þ

h ϕið Þ ¼ μþ βT i þ ηi with ηi∼N 0; Ωð Þ; ð4Þ

where:

– f is the non-linear model,

– Φi is the vector of individual parameters of length p

where p is the number of parameters,

– eij is the residual error assumed to follow a normal

distribution with mean 0 and variance σ2,

– h is the transformation of the vector of parameters

that make them normally distributed,

– μ is the vector of fixed effects,

– β is the vector of coefficient of the only covariate

studied i.e. the difference of effectiveness between

PI-A and PI-B (with Ti = 0 if treatment is PI-A and

Ti = 1 if treatment is PI-B),

– ηi is the vector of random effects independent of ei,

and are supposed to be independent, with diagonal

variance-covariance matrix Ω ¼ diag ω2
1;…;ω2

p

� �

.

It is assumed that h is the logarithm transformation

for V0, δ and c and the logit transformation for ε.

Parameter values

Mean parameter values, inter-individual standard devia-

tions (ω) and standard deviation of residual error, σ, for

patients treated with PI-A were assumed to be similar to

those found in phase 1 of clinical trials with telaprevir at

steady state [7] (Table 1). We assumed that PI-A imme-

diately reached its steady state level of effectiveness, with

mean εA = 0.999. Similar parameter distribution was as-

sumed in patients treated with PI-B, except for the mean

antiviral effectiveness of PI-B, εB. We considered several

values for εB equal to 0.999, 0.998, 0.995 and 0.990, cor-

responding to a similar, 2-fold, 5-fold and 10-fold lower

levels in the blocking of viral production than PI-A, re-

spectively. The LOD was fixed to 12 IU/mL [20].

Clinical trial simulation

We considered different designs in real-life setting, i.e.,

with a limited number of VL measurements per patient.

Two schedules for the VL assessments were considered,

called “7 VL” and “5 VL” in the following. “7 VL” had

seven VL measurements at days 0, 0.33, 1, 2, 3, 7 and 14

whereas “5 VL” was sparser and did not have the early

measurements at days 0.33 and 1 that are often difficult

to obtain in clinical practice. Then different scenarios

were considered according to the number of VL mea-

surements (n) and the number of patients per group of

treatment (N). In order to have designs that could be

easily compared, we considered different designs with

5 VL or 7 VL but constant total numbers of observations

per group ntot = N×n. We considered small sample size

with: ntot = 50 (N = 10 and n = 5) and ntot = 70 (N = 10

and n = 7 or N = 14 and n = 5), middle sample size with:

ntot = 100 (N = 20 and n = 5) and ntot = 140 (N = 20 and

n = 7 or N = 28 and n = 5) and larger sample size with:

ntot = 150 (N = 30 and n = 5) and ntot = 210 (N = 30 and

n = 7 or N = 42 and n = 5). For each scenario, K = 500

dataset were generated using R software version 2.15.0

(R foundation for Statistical Computing, Vienna, Austria).

Examples of simulated dataset with the design N = 30

and n = 7 and the different levels of antiviral effectiveness

considered with the percentage of patients below the LOD

at day 3, 7 and 14 is shown in Figure 1.

Parameter estimation

Data of each simulated trial were analyzed using MONO

LIX version 4.2 (http://www.lixoft.eu/monolix/product-

monolix-overview/) [21], a software devoted to maximum

likelihood estimation of parameters in NLMEM using an

extension of the stochastic approximation expectation-

approximation (SAEM) algorithm [22,23]. Of note one ad-

vantage of maximum likelihood estimation (noted “ML”

in the following) is that it takes into account the informa-

tion brought by BLD data [10]. We compared accuracy

and precision of parameter estimations obtained with

those that would be obtained if all data were observed

with no BLD data at all (referred as “all data”).

For each scenario, relative estimation errors REE θ̂k

� �

;

k ¼ 1;…;K were computed as shown in equation (5),

Table 1 Value, distribution and inter-individual standard deviation of population parameters from data with patients

treated by monotherapy of PI-A [7]

V0 (IU/mL) c (day-1) δ (day-1) ε σ (log10 IU/mL)

Fixed effect 2.68 106 13.4 0.58 0.999 0.19

Transformation lognormal lognormal lognormal logistic-normal -

Inter-individual standard deviation (ω) 1.09 0.25 0.25 0.61 -
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Figure 1 Time course of log10 HCV RNA after treatment initiation for one simulated dataset with one design (N = 30 patients per PI

and n = 7 viral load measurements). A: assuming ε = 0.999; B1: assuming ε = 0.998; B2: assuming ε = 0.995; B3: assuming ε = 0.990. In bold,
the mean curves predicted by the mean parameters of the model. LOD: limit of detection = log10(12) ≈ 1.08 log10 UI/mL; % < LOD: percentage
of patients bellow the LOD at day 3, 7 and 14 estimated from 500 simulated datasets. The mean 14 days log drop were 6.56 log10 IU/mL with
ε = 0.999, 6.25 log10 IU/mL with ε = 0.998, 5.85 log10 IU/mL with ε = 0.995 and 5.52 log10 IU/mL with ε = 0.990.
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where θ̂k is the parameter estimated for the kth replicate

and θ* the true parameter value used to generate the data.

REE θ̂k

� �

¼
θ̂k−θ

�

θ�
� 100 ð5Þ

Each REEk was expressed in percent. We plotted the

boxplot of the REE with the 10% and 90% percentiles.

Then, from the REE, the relative bias (RB) and the rela-

tive root mean square error (RRMSE) were computed as

shown in equation (6) and (7).

RB θ̂k

� �

¼
1

k
∑
K
k¼1REE θ̂k

� �

ð6Þ

RRMSE θ̂k

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

k
∑
K
k¼1REE θ̂k

� �2
r

ð7Þ

The accuracy and the precision of parameter estimates

were evaluated using RB and RRMSE, respectively.

Detection of a difference in antiviral effectiveness

We analyzed for each scenario the ability to detect a dif-

ference of antiviral effectiveness between the two PIs.

Given that treatment antiviral effectiveness was estimated

on a logistic scale we defined accordingly the difference of

effectiveness between the two PIs, β, as β = logit(εA) − logit

(εB). For each simulated dataset, the estimated value of β;

β̂ , was obtained along with its (estimated) standard error,

SEβ̂ . Then the Wald test statistics given by β̂
SE

β̂
was calcu-

lated and the null hypothesis “H0: β = 0” was rejected at

the level of 5% if β̂
SE

β̂

�

�

�

�

�

� > 1:96 . Thus in scenarios where

εA = εB = 0.999 and therefore β = 0, the type I error was

given by the proportion of dataset among the 500 simu-

lated that led to reject H0. Similarly the power to detect a

difference in treatment antiviral effectiveness was calcu-

lated in scenarios where β ≠ 0 and was given by the pro-

portion of datasets among the 500 simulated that led to

reject H0. With εA = 0.999 and with values of εB equal to

0.998, 0.995 and 0.990, β were equal to 0.7, 1.6 and 2.3,

respectively. Type I error and power were evaluated with

all designs describe above and consistent with previous

analysis [15,24], we expect an inflation of the type I error

with the Wald test. To ensure a type I error of 5%, we de-

fine for each design a correction threshold as the 5th per-

centile of the distribution of the p-values of the test under

H0 for the 500 simulated dataset. Then we used that

corrected threshold as a limit of significance in the evalu-

ation of the tests under H1 to compute the corrected

power [15,25]. Furthermore we evaluated type I error with

2 larger sample size to approach asymptotic conditions

with: ntot = 350 (N = 50 and n = 7) and ntot = 700 (N =

100 and n = 7). Lastly, the power to detect a difference in

treatment effectiveness between the two PIs was

compared with the one obtained by standard empirical ap-

proaches where the difference in viral decline at day 14

between two treatments is tested by a non parametric

two-sided Wilcoxon test.

Results
Parameter estimation

First we evaluated the impact of having a large propor-

tion of BLD data on the precision of parameter esti-

mates. Proportions of BLD data were equal to 19.3% and

88.3% at days 7 and 14 with ε = 0.999, 10.2% and 80.7%

with ε = 0.998, 3.9% and 66.7% with ε = 0.995, 1.5% and

54.3% with ε = 0.990, respectively (Figure 1). For that

purpose we compared the parameters estimation with

all data or ML with the design N = 30 and n = 7 and

assuming a lower effectiveness for PI-B than PI-A (εA =

0.999 vs εB = 0.990).

Assuming all data, i.e., all data can be observed and

there is no LOD, all the parameter estimates had a very

small RB lower than 1% and 11% for the fixed effects

and the inter-individual variance parameters, respectively.

Similarly, the RRMSE were lower than 10% and 33% for

the fixed effects and the inter-individual variance parame-

ters, respectively (Table 2). Yet, the precision of both the

fixed effect and inter-individual variance parameters were

very close to those found with the ML uncensored data

(Table 2), showing the relevance of maximum likelihood

in the handling of censored data. Similar results were

obtained when comparing the distribution of the REE from

the 500 simulated datasets (Figure 2). Equally good per-

formance was obtained when considering sparser sampling

design with n = 5 VL measurements per patient except for

the viral clearance rate, c (Table 2 and Figure 2) [11].

Type I error of the Wald test

Next we evaluated the type I error of the Wald test

according to different designs and assuming εA = εB = 0.999

(Figure 3). A type I error of 14.4% was found with ML

data, n = 5 VL and N = 10 showing that the asymptotic

conditions under which the Wald test is valid were not

met with this design. In fact a minimal number of obser-

vations per group ntot = 140 was necessary in order

to achieve a type I error less than 10% and ntot = 700

(N = 100 and n = 7) were needed for type I error to be

in the 95% prediction interval around 5% [3.1%; 6.9%]

with ML data. Of note, for a given value of N, the num-

ber of VL measurements did not substantially change the

type I error (Figure 3) and increasing the number of pa-

tients N was more beneficial than having more frequent

VL assessments within each patient. For instance the type I

error was lower with the design N = 14 and n = 5 than with

the design N = 10 and n = 7 (Figure 3) although the total

number of observation per patient ntot was the same and

equal to 70. In addition to the influence of the number of
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patients, the type I error was also deteriorated by the pres-

ence of a large proportion of BLD data, even if they were

taken into account appropriately. Indeed type I errors were

consistently smaller when assuming that there was no LOD

(“all data”). As shown in Figure 3, the type I error was equal

to 10.4% with all data, N = 10 and n = 5 compared to

14.4% with ML data.

Power to detect a difference in antiviral effectiveness

Next, we evaluated the power to detect a difference of

effectiveness between the two PIs assuming εA = 0.999

and lower values of εB equal to 0.998, 0.995 and 0.990

with different designs. Except when both effectiveness

were close (i.e., εB = 0.998), the power of the Wald test,

corrected or not (see methods), was larger than 95%, re-

gardless of the number of sampling VL measurements

and the number of patients per PI (Table 3). As found

for the type I error, increasing the number of patients

N was more beneficial than having more frequent VL as-

sessments within each patient. For instance power was

higher with the design N = 28 and n = 5 than with the

design N = 20 and n = 7 (Table 3) although the total

Table 2 Relative bias (RB) (%) and relative root mean square error (RRMSE) (%) of the estimated parameters evaluated

from 500 simulated datasets

All data (n = 7 VL) ML (n = 7 VL) ML (n = 5 VL)

RB (%) RRMSE (%) RB (%) RRMSE (%) RB (%) RRMSE (%)

log10(V0) (IU/mL) 0.1 1.0 0.2 1.0 0.1 1.0

c (day-1) 1.0 4.3 0.6 4.1 34.1 78.8

δ (day-1) 0.2 3.2 0.8 3.7 0.6 3.7

-log10(1-ε) 0.1 3.2 0.4 3.1 0.3 3.6

β 0.4 8.5 −0.5 8.5 0.4 9.9

ω
2
vo −0.4 18.9 −1.0 19.0 −0.5 19.3

ω
2
c −4.6 31.5 −10.9 32.9 236.6 358.3

ω
2
δ −3.0 19.8 −2.3 24.5 −2.4 24.9

ω
2
ε −2.6 32.2 −4.5 32.0 −9.9 36.3

σ −0.03 5.3 −0.7 6.2 −1.3 8.0

Parameters were simulated with N = 30 patients per group assuming ε
A = 0.999 and ε

B = 0.990, no limit of detection (“All data”) or a limit of detection at 12 IU/mL (“ML”),

and with n = 7 or 5 viral load (VL) measurements per patient.

Figure 2 Boxplot of the relative estimation errors (REE) of the estimated parameters evaluated from 500 simulated datasets. Parameters
were simulated assuming ε

A = 0.999, a limit of detection (“ML data”) and ε
B = 0.990 (β = 2.3), with N = 30 patients per PI and with n = 7 viral load (VL)

measurements (in white) or n = 5 VL (sparse initial design in gray). On the left: fixed effects and on the right: inter-individual variances (ω²) and residual
error (σ).
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number of observation per patient ntot was the same and

equal to 140.

Lastly, we compared these results with the power

achieved by comparing the mean viral decline at day 14

between both groups using a Wilcoxon test. The power

of Wilcoxon test was on average lower of 44% as com-

pared to the one achieved with viral kinetic model and

NLMEM with εB = 0.995 or 0.998 (Table 3). Even when

PI-B’s and PI-A’s antiviral effectivenesses were assumed

to be 0.990 and 0.999, respectively, corresponding to a

10-fold difference in the viral production under treat-

ment, the power of the Wilcoxon test was only equal to

67% with N = 30, compare to 100% with the Wald test

(Table 3). It should be noted that the type I error of the

Wilcoxon test, which is a non parametric test, was not

inflated (5.2% with the design N = 10 for example).

Figure 3 Evolution of the type I error of the Wald test according to the study design. Assuming ε
A = ε

B = 0.999, no limit of detection (“All data”,
red line) or a limit of detection at 12 IU/mL (“ML”, blue line). N: number of patients per group of treatment; n: number of viral load measurements per
patient; ntot: total numbers of observations per group of treatment.

Table 3 Power (%) to detect a difference of effectiveness between PI-A and PI-B according to the study design and the

effectiveness of PI-B (εB), assuming ε
A = 0.999 and a limit of detection (“ML data”)

ε
B 0.998 0.995 0.990 0.998 0.995 0.990 0.998 0.995 0.990

Small sample size
Design*

N = 10 and n = 7 N = 14 and n = 5 N = 10 and n = 5

ntot = 70 ntot = 70 ntot =50

Wald test (uncorrected) 62.2 99.8 100 61.8 100 100 55.2 98.8 100

Wald test (corrected) 44.2 98.4 100 50.4 100 100 35.8 95.8 100

Wilcoxon test 6.6 11.2 26.8 4.4 15.6 39.0 6.6 11.2 26.8

Design*
N = 20 and n = 7 N = 28 and n = 5 N = 20 and n = 5

ntot = 140 ntot = 140 ntot = 100

Middle sample size Wald test (uncorrected) 83.4 100 100 86.8 100 100 77.8 100 100

Wald test (corrected) 69.0 100 100 78.0 100 100 58.8 100 100

Wilcoxon test 7.0 23.0 50.4 6.8 30.4 64.6 7.0 23.0 50.4

Large sample size
Design*

N = 30 and n = 7 N = 42 and n = 5 N = 30 and n = 5

ntot = 210 ntot = 210 ntot = 150

Wald test (uncorrected) 94.0 100 100 86.8 100 100 89.4 100 100

Wald test (corrected) 89.2 100 100 82.6 100 100 82.6 100 100

Wilcoxon test 7.4 31.0 67.0 9.2 43.8 85.0 7.4 31.0 67.0

* N: number of patients per group of treatment; n: number of viral load measurements per patient; ntot: total numbers of observations per group of treatment.
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Discussion
The goal of this study was to evaluate the capacity of

NLMEM to provide precise and accurate estimates of viral

kinetic parameters when only sparse data with a large pro-

portion of BLD data are available. In particular we aimed

to evaluate the ability of this approach to correctly reject

or not the null hypothesis of equal treatment effectiveness

when two groups with different antiviral strategies are

compared.

Our results showed that NLMEM provide very precise

and accurate estimates for both the fixed effects and the

inter-individual variance parameters, even when only 5 data

points (at days 0, 2, 3, 7 and 14) were available within each

patient. This allowed circumventing the need for intensive

VL sampling measurements at treatment initiation, which

are difficult to obtain in current clinical practice. Of note

the viral clearance rate, c and its associated variability ωc,

were poorly estimated in this sparse initial sampling.

However this parameter is mostly involved in the initial rate

of viral decline and thus a poor estimation of c did not sub-

stantially deteriorate the estimation of the other parameters

(Table 2).

By comparing the results obtained with and without a

LOD for VL, we demonstrated that maximum likelihood

appropriately handle BLD, consistent with results found

previously [10]. The conclusion was somewhat different

when considering the outcome of Wald test for compar-

ing antiviral effectiveness. In this case the lack of informa-

tion due to BLD contributed to an inflation of the type I

error as compared to the results obtained with no LOD of

VL, suggesting that the development of real-time PCR as-

says with lower LOD may improve the estimation of viral

kinetic parameters. Interestingly, even when there was no

LOD of VL, we still found that the type I error was in-

flated when the number of observations ntot was lower

than 140. This suggests that the outcome of Wald test

should be taken with caution when the number of patients

is low and in that case we suggested to use a threshold

correction for the Wald test to limit the impact of this in-

flation. Here we used an empirical threshold correction

but other corrections exist such as the Galland correction

or the permutation test [15]. On the other hand the power

of the Wald test (corrected or not) was found to be very

high, especially when compared with that obtained using a

Wilcoxon test on the mean viral decline at day 14. This

result clearly shows the benefit of viral kinetic analyzed

with NLMEM over empirical approaches done in most

clinical studies. Although better results may be obtained

by comparing the viral decline at earlier time points (such

as day 2 or 7) the power of the Wilcoxon test remained

lower than those achieved by modeling approach (not

shown). Consistent with results found elsewhere, the

power increases when the number of observations per pa-

tient increases and was much less sensitive to the number

of measurements within each patient [26]. From a clinical

standpoint this finding indicates that the enrollment of a

large population of study is to be preferred to small

population sample with frequent assessments of VL.

We focused here on the properties of the Wald test

and further studies would be needed to study how these

results apply to other tests that require more computa-

tion time, such as likelihood ratio tests (LRT) or score

test. Interestingly previous simulation studies using the

SAEM algorithm in MONOLIX showed that the out-

comes of these tests were largely comparable [15]. Of

note this result may not hold when other estimation

methods are used and for instance the outcomes of

Wald test and LRT were found to be different when

using the FOCE-I algorithm in NONMEM version 7

[15]. Indeed the Wald test had a lower power than LRT

with FOCE-I, which was probably due to the poor esti-

mation of the standard error of the covariate effect [25].

The advantage of the Wald test is that results are immedi-

ately obtained and do not require to compute the likeli-

hood or its derivatives, as done for the LRT and the score

test. Computation time needed by simulations could be

largely reduced by using information theory and approxi-

mations to derive Fisher information matrix. For instance

the software PFIM uses a first order approximation of the

likelihood and, under this approximation, an analytical

form of the Fisher matrix can be obtained [27]. Thus the

expected variance of viral kinetic parameters could be

obtained without the intensive simulations done here. Al-

though such approximations worked well even with lim-

ited number of patients [11], it does not take into account

BLD data and hence could underestimate the standard

error when a large proportion of data are BLD. It should

be noted that optimal design theory predicts that an in-

crease of variances in random effect may deteriorate the

precision of parameter estimates and the power of the

Wald test. However this possibility was not investigated in

this study where the inter-individual variance parameters

were fixed.

Here we focused on the comparison of treatment anti-

viral effectiveness in the first two weeks of treatment. On

this short time scale the standard biphasic model of viral

kinetics has been shown to provide a good fit to the data

[7,16]. However more complex models may be needed to

fit long-term VL data, such as models that relax the as-

sumption of constant target cells and/or account for the

emergence of treatment resistant viruses [28,29]. Moreover

viral decline during PI therapy is faster than what is

observed with IFN-based therapy [30]. This feature is

captured in the standard biphasic model by assuming that

PIs lead to an enhancement of the treatment effectiveness,

ε, and of the clearance rate of infected cells, δ [7,29,31].

Consistent with this observation we set here large mean

values for both ε and δ, equal to 0.999 and 0.58 day-1 as
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compared to 0.92 and 0.14 day-1 with IFN-based therapy,

respectively [30]. However this dual mode of action of PIs

may be integrated in a more physiological way by using

new multiscale viral kinetic models that explicitly integrate

the effect of PIs on the intra-cellular viral dynamics [9].

Although the use of NLMEM has been shown to pro-

vide very precise and accurate estimates of the parameters

even in presence of sparse designs, it should be acknowl-

edged that these estimates are done on the population pa-

rameters, i.e., the mean and the variance of parameters in

the population. How NLMEM also allow precise and ac-

curate estimation of the individual parameters for individ-

ualized treatment duration remains to be evaluated.

Conclusion
Compared with standard approach (with Wilcoxon test),

modeling approach (with Wald test) provides very pre-

cise and accurate estimates of viral kinetic parameters

and a more powerful tool to detect a difference in early

viral kinetic profile of two PIs with different antiviral ef-

ficacy, even with sparse initial sampling or small number

of patients. When designing a viral kinetic study, our re-

sults indicate that the enrollment of a larger number of

patients is to be preferred to smaller sample size with

more frequent assessments of viral load. We showed

that a threshold correction is needed for the Wald test

with small samples especially if there are many BLD

data.
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