S. Paul, Dysfunction of the ubiquitin-proteasome system in multiple disease conditions: therapeutic approaches, BioEssays, vol.104, issue.11-12, pp.1172-1184, 2008.
DOI : 10.1002/bies.20852

S. Lecomte, F. Desmots, L. Masson, F. , L. Goff et al., Roles of heat shock factor 1 and 2 in response to proteasome inhibition: consequence on p53 stability, Oncogene, vol.66, issue.29, pp.4216-4224, 2010.
DOI : 10.1038/onc.2010.171

URL : https://hal.archives-ouvertes.fr/hal-00592439

L. Pirkkala, T. Alastalo, X. Zuo, I. Benjamin, and L. Sistonen, Disruption of Heat Shock Factor 1 Reveals an Essential Role in the Ubiquitin Proteolytic Pathway, Molecular and Cellular Biology, vol.20, issue.8, pp.2670-2675, 2000.
DOI : 10.1128/MCB.20.8.2670-2675.2000

A. Mathew, S. Mathur, and R. Morimoto, Heat Shock Response and Protein Degradation: Regulation of HSF2 by the Ubiquitin-Proteasome Pathway, Molecular and Cellular Biology, vol.18, issue.9, pp.5091-5098, 1998.
DOI : 10.1128/MCB.18.9.5091

F. Loison, L. Debure, P. Nizard, L. Goff, P. Michel et al., Up-regulation of the clusterin gene after proteotoxic stress: implication of HSF1???HSF2 heterocomplexes, Biochemical Journal, vol.395, issue.1, pp.223-231, 2006.
DOI : 10.1042/BJ20051190

URL : https://hal.archives-ouvertes.fr/hal-00020985

P. Ostling, J. Björk, P. Roos-mattjus, V. Mezger, and L. Sistonen, Heat Shock Factor 2 (HSF2) Contributes to Inducible Expression of hsp Genes through Interplay with HSF1, Journal of Biological Chemistry, vol.282, issue.10, pp.7077-7086, 2007.
DOI : 10.1074/jbc.M607556200

A. ?-kerfelt, M. Morimoto, R. Sistonen, and L. , Heat shock factors: integrators of cell stress, development and lifespan, Nature Reviews Molecular Cell Biology, vol.14, issue.8, pp.545-554, 2010.
DOI : 10.1038/nrm2938

M. Fiorenza, T. Farkas, M. Dissing, D. Kolding, and V. Zimarino, Complex expression of murine heat shock transcription factors, Nucleic Acids Research, vol.23, issue.3, pp.467-474, 1995.
DOI : 10.1093/nar/23.3.467

M. Goodson and K. Sarge, Regulated Expression of Heat Shock Factor 1 Isoforms with Distinct Leucine Zipper Arrays via Tissue-Dependent Alternative Splicing, Biochemical and Biophysical Research Communications, vol.211, issue.3, pp.943-949, 1995.
DOI : 10.1006/bbrc.1995.1903

M. Goodson, O. Park-sarge, and K. Sarge, Tissue-dependent expression of heat shock factor 2 isoforms with distinct transcriptional activities., Molecular and Cellular Biology, vol.15, issue.10, pp.5288-5293, 1995.
DOI : 10.1128/MCB.15.10.5288

S. Leppä, L. Pirkkala, H. Saarento, K. Sarge, and L. Sistonen, Overexpression of HSF2-?? Inhibits Hemin-induced Heat Shock Gene Expression and Erythroid Differentiation in K562 Cells, Journal of Biological Chemistry, vol.272, issue.24, pp.15293-15298, 1997.
DOI : 10.1074/jbc.272.24.15293

D. Mcmillan, E. Christians, M. Forster, X. Xiao, and P. Connell, Heat Shock Transcription Factor 2 Is Not Essential for Embryonic Development, Fertility, or Adult Cognitive and Psychomotor Function in Mice, Molecular and Cellular Biology, vol.22, issue.22, pp.8005-8014, 2002.
DOI : 10.1128/MCB.22.22.8005-8014.2002

L. Masson, F. Christians, and E. , HSFs and regulation of Hsp70.1 (Hspa1b) in oocytes and preimplantation embryos: new insights brought by transgenic and knockout mouse models, Cell Stress and Chaperones, vol.86, issue.3, pp.275-285, 2011.
DOI : 10.1007/s12192-010-0239-1

D. Mcmillan, X. Xiao, L. Shao, K. Graves, and I. Benjamin, Targeted Disruption of Heat Shock Transcription Factor 1 Abolishes Thermotolerance and Protection against Heat-inducible Apoptosis, Journal of Biological Chemistry, vol.273, issue.13, pp.7523-7528, 1998.
DOI : 10.1074/jbc.273.13.7523

A. Metchat, M. Bierkamp, C. Delsinne, V. Sistonen, and L. , Mammalian Heat Shock Factor 1 Is Essential for Oocyte Meiosis and Directly Regulates Hsp90?? Expression, Journal of Biological Chemistry, vol.284, issue.14, pp.9521-9528, 2009.
DOI : 10.1074/jbc.M808819200

L. Masson, F. Razak, Z. Kaigo, M. Audouard, C. Charry et al., Identification of Heat Shock Factor 1 Molecular and Cellular Targets during Embryonic and Adult Female Meiosis, Molecular and Cellular Biology, vol.31, issue.16, pp.3410-3423, 2011.
DOI : 10.1128/MCB.05237-11

A. Sandqvist, J. Björk, A. ?. , M. Chitikova, Z. Grichine et al., Heterotrimerization of Heat-Shock Factors 1 and 2 Provides a Transcriptional Switch in Response to Distinct Stimuli, Molecular Biology of the Cell, vol.20, issue.5, pp.1340-1347, 2009.
DOI : 10.1091/mbc.E08-08-0864

URL : https://hal.archives-ouvertes.fr/inserm-00365055

D. Michel, How transcription factors can adjust the gene expression floodgates, Progress in Biophysics and Molecular Biology, vol.102, issue.1, pp.16-37, 2010.
DOI : 10.1016/j.pbiomolbio.2009.12.007

URL : https://hal.archives-ouvertes.fr/hal-00464812

V. Mezger, M. Rallu, R. Morimoto, M. Morange, and J. Renard, Heat Shock Factor 2-like Activity in Mouse Blastocysts, Developmental Biology, vol.166, issue.2, pp.819-822, 1994.
DOI : 10.1006/dbio.1994.1361

X. Liu, P. Liu, N. Santoro, and D. Thiele, Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF, The EMBO Journal, vol.16, issue.21, pp.6466-6477, 1997.
DOI : 10.1093/emboj/16.21.6466

L. Sistonen, K. Sarge, B. Phillips, K. Abravaya, and R. Morimoto, Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells., Molecular and Cellular Biology, vol.12, issue.9, pp.4104-4111, 1992.
DOI : 10.1128/MCB.12.9.4104

T. Yoshima, T. Yura, and H. Yanagi, Function of the C-terminal transactivation domain of human heat shock factor 2 is modulated by the adjacent negative regulatory segment, Nucleic Acids Research, vol.26, issue.11, pp.2580-2585, 1998.
DOI : 10.1093/nar/26.11.2580

H. Xing, D. Wilkerson, C. Mayhew, E. Lubert, and H. Skaggs, Mechanism of hsp70i Gene Bookmarking, Science, vol.307, issue.5708, pp.421-423, 2005.
DOI : 10.1126/science.1106478

H. He, F. Soncin, N. Grammatikakis, Y. Li, and A. Siganou, Elevated Expression of Heat Shock Factor (HSF) 2A Stimulates HSF1-induced Transcription during Stress, Journal of Biological Chemistry, vol.278, issue.37, pp.65465-35475, 2003.
DOI : 10.1074/jbc.M304663200

T. Rieger, R. Morimoto, and V. Hatzimanikatis, Mathematical Modeling of the Eukaryotic Heat-Shock Response: Dynamics of the hsp70 Promoter, Biophysical Journal, vol.88, issue.3, pp.1646-1658, 2005.
DOI : 10.1529/biophysj.104.055301

Z. Szyman´skaszyman´ska and M. Zylicz, Mathematical modeling of heat shock protein synthesis in response to temperature change, Journal of Theoretical Biology, vol.259, issue.3, pp.562-569, 2009.
DOI : 10.1016/j.jtbi.2009.03.021

I. Petre, A. Mizera, C. Hyder, A. Meinander, and A. Mikhailov, A simple mass-action model for the eukaryotic heat shock response and its mathematical validation, Natural Computing, vol.594, issue.11, pp.595-612, 2011.
DOI : 10.1007/s11047-010-9216-y

A. Mathew, S. Mathur, C. Jolly, S. Fox, and S. Kim, Stress-Specific Activation and Repression of Heat Shock Factors 1 and 2, Molecular and Cellular Biology, vol.21, issue.21, pp.7163-7171, 2001.
DOI : 10.1128/MCB.21.21.7163-7171.2001

Y. Kawazoe, A. Nakai, M. Tanabe, and K. Nagata, Proteasome inhibition leads to the activation of all members of the heat-shock-factor family, European Journal of Biochemistry, vol.255, issue.2, pp.356-362, 1998.
DOI : 10.1046/j.1432-1327.1998.2550356.x