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the integration of repeated measures
experiments from two assays
Benoit Liquet1,2,5*, Kim-Anh Lê Cao3, Hakim Hocini4,5 and Rodolphe Thiébaut1,2,5

Abstract

Background: High throughput ’omics’ experiments are usually designed to compare changes observed between

different conditions (or interventions) and to identify biomarkers capable of characterizing each condition. We

consider the complex structure of repeated measurements from different assays where different conditions are

applied on the same subjects.

Results: We propose a two-step analysis combining a multilevel approach and a multivariate approach to reveal

separately the effects of conditions within subjects from the biological variation between subjects. The approach is

extended to two-factor designs and to the integration of two matched data sets. It allows internal variable selection to

highlight genes able to discriminate the net condition effect within subjects. A simulation study was performed to

demonstrate the good performance of the multilevel multivariate approach compared to a classical multivariate

method. The multilevel multivariate approach outperformed the classical multivariate approach with respect to the

classification error rate and the selection of relevant genes. The approach was applied to an HIV-vaccine trial

evaluating the response with gene expression and cytokine secretion. The discriminant multilevel analysis selected a

relevant subset of genes while the integrative multilevel analysis highlighted clusters of genes and cytokines that

were highly correlated across the samples.

Conclusions: Our combined multilevel multivariate approach may help in finding signatures of vaccine effect and

allows for a better understanding of immunological mechanisms activated by the intervention. The integrative

analysis revealed clusters of genes, that were associated with cytokine secretion. These clusters can be seen as gene

signatures to predict future cytokine response. The approach is implemented in the R package mixOmics

(http://cran.r-project.org/) with associated tutorials to perform the analysisa.

Background
Recent advances in high throughput ‘omics’ technolo-

gies enable quantitative measurements of expression or

abundance of biological molecules in a whole biological

system. Various popular omics platforms in systems biol-

ogy include transcriptomics, proteomics, cytomics and

metabolomics. These experiments are usually designed to

compare changes observed between different conditions
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or groups and are often used to identify biomarkers capa-

ble of characterising pathological states or response to

treatment.

The decreasing costs of these high-throughput plat-

forms now enable repeated measures experiments on the

same individuals or biological samples. Such experiments

allow a substantial gain in information. For instance, lon-

gitudinal designs are more powerful as they reduce the

noise due to inter individual variability, as long as the

correlation between repeated observations is taken into

account. There exists an abundant literature on the anal-

ysis of repeated measurements of omics data [1,2]. In

this context, a common approach is to apply a univariate

mixed model on each gene followed by multiple test-

ing correction [3]. However, this approach disregards the

© 2012 Liquet et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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dependency between genes, and due to the high dimen-

sionality of the data, numerous hypotheses tests must be

performed.

The mixed model approach has been used for the analy-

sis of one single data type (e.g. gene expression). However,

a growing number of high-throughput data are gener-

ated in standard clinical trials. For example, the evaluation

of HIV vaccine in phase I/II trials incorporates mea-

surements of counts of numerous types of cell, of the

production of intra and extracellular cytokines and of gene

expression [4]. The integration of such multi-layer infor-

mation can help unravel the complexities of a biological

system, as each functional level is hypothesized to be

related to each other [5]. However the integration of omics

data is a challenging task. Firstly, the large number of mea-

sured biological entities makes it very difficult to obtain

a good overview or understanding of the system under

study. Secondly, the small number of samples or patients

makes statistical inference difficult and argue for using the

maximum amount of available information. Thirdly, the

integration of heterogeneous data represents an analyti-

cal and numerical challenge when trying to find common

patterns in data from different origins.

In recent years, several multivariate approaches have

been proposed to combine two omics data, often in

an unsupervised framework. In contrast to univariate

repeated measures analysis, these linear multivariate

approaches take into account the dependency between

genes, are able to handle large and noisy data sets and do

not face computational issues in the high dimensional case

as matrix inversions are avoided. Most importantly in the

context of this study, they enable the integration of data

coming from different platforms and provide interpretable

visualisation tools. These approaches aim at selecting cor-

related biological entities from two [6-11] or more data

sets [12]. In particular, with sparse Partial Least Squares

(sPLS) we have shown that the integrative analysis of

large scale omics datasets could generate new knowledge

not accessible by the analysis of a single data type alone

[7,8]. The biological relevance of this approach has been

illustrated recently in some studies [13,14].

The flexibility and versatility of PLS also enable a

supervised framework through PLS-Discriminant Analy-

sis (PLS-DA [15]). A variant of which has recently been

proposed to select discriminative features that best sep-

arate the different conditions (sPLS-DA, [16]). sPLS-DA

was shown to give similar performances to classical clas-

sification methods such as Machine Learning approaches

and variants of Linear Discriminant Analysis and was

recently applied in a biological study [17].

In this paper, we consider a two-step approach to model

the correlation between repeated measurements while

taking advantage of the multivariate approaches. We first

propose to extract the within-sample variation [18-20]

before analysing this transformed data set using sPLS-

DA for a discriminant analysis or sPLS for an integrative

analysis.

Starting from the classical mixed-model, we present the

principle of a multilevel analysis to extract the within-

sample deviation of the data and we extend the approach

to a two-factor analysis. The within data set is then anal-

ysed with either sPLS-DA to select discriminative genes

between the groups of subjects on a single data set, or

with sPLS to select subsets of correlated variables from

two data sets. A simulation study is performed which

demonstrates the good performance of multilevel sPLS-

DA compared to a classical sPLS-DA. The approach is

then illustrated on an HIV vaccination study, where the

effect of a lipopeptide based vaccine was explored by mea-

suring before and after vaccination various components

of the immune response, including gene expression and

cytokine secretion. These repeated measurement were

made in several in vitro conditions on Peripheral Blood

Mononuclear Cells: ‘NS’ (no stimulation); HIV Gag pep-

tides ‘GAG+’ (peptides included in the vaccine), HIV Gag

peptides ‘GAG-’ (peptides not included in the vaccine)

and ‘LIPO5’ (all five peptides included in the vaccine).

Methods
Notations

Let X(N × p) and Z(N × q) represent two data matrices

(e.g. gene expression and cytokine secretion). We denote

by N the total number of samples (or rows) in the data,

and by n the number of experimental units (or unique

subjects), p (resp. q) is the total number of genes (resp.

cytokines), also called variables or predictors. The dummy

matrix Y (N × G) indicates the group/treatment of the

samples, with G the total number of groups.

Multilevel approach

We first present the mixed-effect model as a pedagogi-

cal tool and then introduce the concept of the multilevel

approach based on the “split-up” variation. Despite the

fact that some similarities exist between the mixed-effect

model and the multilevel “split-up” variation approach, we

emphasize that the latter is performed completely inde-

pendently from the estimation of the mixed-effect model.

Moreover, the mixed model relies on certain assumptions

(such as Gaussian distribution of random effects) that the

split-up variation approach does not require.

Mixed-effectmodel

Let Xk
sj be the gene expression of a given gene k for subject

s with stimulation j. In this context, the mixed model is

defined by:

Xk
sj = μk

j + πk
s + ǫksj, s = 1, . . . , n, j = 1, . . . ,Gs

= μk
·· + αk

j + πk
s + ǫksj
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where for a given gene k, μk
j measures the fixed effect

of stimulation j, which can be further decomposed into

μk
··, the overall mean stimulation effect, plus αk

j which is

the differential effect for stimulation j. The πk
s are inde-

pendent random variables following a normal distribu-

tion N (0, σ 2
π ,k), which take into account the dependency

between the repeated measures made on the same subject

s, the residuals ǫksj are independent random variables fol-

lowing a N (0, σ 2
ǫ,k) distribution. Note that the number of

stimulation for each subject (Gs) may differ. However, for

each subject s we observe no more than one observation

for each stimulation j, thus the subject effect interac-

tions with the stimulation factor are confounded with the

residuals. We also assume that πk
s and ǫksj are independent.

This model is known also as the one-way unbalanced

random-effects ANOVA. A simple approach for identi-

fying differentially expressed (DE) genes in this model is

to test the stimulation effect for each gene and apply a

multiple testing correction (FDR from [21] set to 5%). Fol-

lowing this global test, pairwise comparison can then be

applied between two stimulations, followed by multiple

correction (e.g. FDR, 5%). Some limitations of this stan-

dard approach are discussed in the Results and discussion

Section. The main advantage of the mixed model is the

introduction of the random element πk
s , which is specific

to the subject s and represents the between-subject devi-

ation. In the same spirit, the multilevel approach based

on the split-up variation focusses on separating the dif-

ferent sources of variation: the within-subject deviation

(“variation”) and the between-subject deviation.

Split-up variation

As suggested by Westerhuis et al. [19] in the mixed model

framework, the observation xksj can be decomposed into:

xksj = xk··
︸︷︷︸

offset

+ (xks· − xk··)
︸ ︷︷ ︸

between-subject deviation

+ (xksj − xks·)
︸ ︷︷ ︸

within-subject deviation

(1)

where xk·· = 1
N

Gs∑

j=1

n∑

s=1

xksj and xks· = 1
Gs

Gs∑

j=1

xksj. The off-

set term xk·· is an estimation of μk
··, the between-subject

deviation is an estimation of πk
s and the within-subject

deviation is an estimation of αk
j + ǫksj and can be further

decomposed as:

(xksj − xks·)
︸ ︷︷ ︸

within-subject deviation

= (xk·j − xk··)
︸ ︷︷ ︸

Stimulation effect

+ (xksj − xks· − xk·j + xk··)
︸ ︷︷ ︸

residual

where xk·j = 1
nj

∑nj
s=1 x

k
sj, with nj the number of sub-

ject undergoing stimulation j. Therefore, a part of the

within-subject deviation is explained by the stimulation

effect.

Let X be the (N × p) gene expression matrix on s =

1, . . . , n subjects with Gs stimulations (in the balanced

case N = n × G, otherwise N =
∑n

s=1Gs). According to

equation (1):

X = X ··
︸︷︷︸

offset term

+ Xb
︸︷︷︸

between-subject deviation

+ Xw
︸︷︷︸

within-subject deviation

The matrix X ·· represents the offset term defined as

1Nx
T
·· , where 1N is the (N ×1) matrix containing ones and

x
T
·· = (x1··, . . . , x

p
··);Xb is the between-subject matrix of size

(N × p) defined by concatenating 1Gsx
T
bs for each subject

into Xb with x
T
bs

= (x1s· − x1··, . . . , x
p
s· − x

p
··); Xw = X − Xs·

is the within-subject matrix of size (N × p), with Xs· the

matrix defined by concatenating the matrices 1Gsx
T
s· for

each subject into Xs·, with x
T
s· = (x1s·, . . . , x

p
s·).

Similarly to the Analysis of Variance, it is easy to show

that the sum of squares can be separated into three parts:

||X||2 = ||X ··||
2 + ||Xb||

2 + ||Xw||2, (2)

where ||X||2 = trace(XT
X). Equation (2) can be used

to evaluate the magnitude of the different sources of

variation.

The mixed-model described earlier can provide an anal-

ysis for repeated measurements data in an unbalanced

design. It can be viewed as an extension of a paired t-test

to test the differences between paired observations. How-

ever, to tackle some of the previously mentioned limita-

tions of the approach, we propose to combine a multilevel

approach and a multivariate approach as an interesting

alternative. Indeed, the multilevel step splits the differ-

ent parts of the variation while taking into account the

repeated measurements on each subject. Since the stim-

ulation effect from each subject can be separated from

the between subject deviation (variation), it is possible to

examine the differences in stimulation effect within the

subjects in a much easier way than without the separation

of the difference sources of variation [19]. Westerhuis et.

al (2010) provided the rationale and showed the benefit

of the multilevel approach in the analysis of multivari-

ate paired (cross-over) data. In this paper where we aim

at identifying genes discriminating the different stimula-

tions, we propose to apply a multivariate approach on the

within matrix Xw which includes the stimulation effect,

in the same spirit as in [18-20]. This approach is more

powerful, as it takes into account not only the depen-

dency between genes via the multivariate approach, but

also the repeated measures between individuals and the

stimulation effects via Xw.
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Extendedmethod for two factors

We propose to extend this approach for data with two

factors: the time (‘before’ and ‘after’ vaccination), in addi-

tion to the stimulation factor. Let Xk
sjt be the expres-

sion of a given gene k for subject s with stimulation

j at time t = 1, 2. In this context, the mixed model

is defined as:

⎧

⎨

⎩

Xk
sjt = μk

jt + πk
s + (απ)ksj + (βπ)kst + ǫksjt ,

μk
jt = μk

··· + αk
j + βk

t + (αβ)kjt ,

where for a given gene k, μk
·· is the gene population mean

(offset term); αk
j measures the fixed effect of stimula-

tion j; βk
t measures the fixed effect of time t; (αβ)kjt is

the interaction effect between the stimulation j and the

time t; πk
s ∼ N(0, σ 2

πk
) is the random subject effect;

(απ)ksj ∼ N(0, σ 2
απk

) measures the random interac-

tion effect between the subject s and the stimulation j;

(βπ)kst ∼ N(0, σ 2
βπk

) measures the random interaction

effect between the subject s and the time t; the residu-

als ǫsjt ∼ N(0, σ 2
ǫk

) and the variables πk
s , ǫ

k
sjt , (απ)ksj and

(βπ)kst are assumed to be independent. In the context of

our application, the potential subject interactions effect

with the stimulation and the time effect are confounded

with the residuals terms since only one observation is

available per subject for each level of both time and

stimulation factors.

According to the mixed model, we have:

xksjt = xk···
︸︷︷︸

offset term

+ (xks·· − xk···)
︸ ︷︷ ︸

between-subject deviation

+ (xksjt − xks··)
︸ ︷︷ ︸

within-subject deviation

where the within-subject deviation can be further decom-
posed as:

(xksjt − xks··) = (xk·j· − xk···)
︸ ︷︷ ︸

Stimulation effect

+ (xk··t − xk···)
︸ ︷︷ ︸

Time effect

+ (xk·jt − xk·j· − xk··t + xk···)
︸ ︷︷ ︸

interaction effect

+ (xksj· − xk·j· − xks·· + xk···)
︸ ︷︷ ︸

random inter: subject × Stimulation

+ (xks·i − xk··t − xks·· + xk···)
︸ ︷︷ ︸

random inter: subject × Time

+ (xksjt − xk·jt − xksj· − xks·t + xk·j· + xk··t + xks·· − xk···)
︸ ︷︷ ︸

Residual

The matrix representation gives:

Xw
︸︷︷︸

within-subject deviation

= XStimulation + XTime + XStimulation×Time + XResidual
︸ ︷︷ ︸

Xw∗

+ Xsubject×Stimulation + Xsubject×Time
︸ ︷︷ ︸

random interaction

Similar to the one-factor decomposition, the multivari-

ate approach will be applied on the within matrix Xw∗ ,

which includes stimulation, time and interaction effects.

Discriminant analysis of one data set

Once the multilevel approach has been applied to split

up the variation in the data, a variant of the multivariate

approach PLS Discriminant Analysis (called sparse PLS-

DA) is applied on the within matrix Xw or Xw∗ in order to

select discriminative genes between the groups of subjects

on a single data set.

Sparse PLS-DA

Linear Discriminant Analysis (LDA) and Partial Least

Squares Discriminant Analysis (PLS-DA, [15]) are

exploratory approaches seeking the optimal linear com-

binations of variables (genes) which best separate the

sample groups. PLS-DA has been found to be a promising

alternative to LDA since the latter faces numerical limita-

tions when dealing with too many correlated predictors.

Let X(N × p) be the within predictor matrix (to improve

readability, the subscript w is removed) and Y (N × G)

the response dummy matrix indicating the group of

each sample. In PLS-DA, X is column standardized. The

PLS-DA objective function to solve can be written as [15]:

max
u

cor(Y ,Xu)var(Xu), (3)

where we denote by ξ = Xu the discriminant direc-

tion vector, which is a linear combination of the original

variables. The vector u is the associated loading vector

indicating the weights of each variable in the linear com-

bination ξ . Once step (3) has been performed and the first

weight vector u1 has been extracted, both matrices Y and

X are deflated such that the following loading vector u2 is

orthogonal to the previous one. PLS-DA therefore outputs

a set of loading weight vectors u1,u2, . . . ,uH and associ-

ated discriminant direction vectors ξ1, ξ2, . . . , ξH , where

H is the number of PLS-DA dimensions (or deflations).

The sparse version proposed by Lê Cao et al. [16] uses

the Lagrange form of PLS-DA to include a L1 constraint
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on u in order to ensure that some uj will be estimated

as exactly zero (j = 1, . . . , p). Thus, these corresponding

variables will not contribute to the discriminant direction.

sPLS-DA therefore allows variable selection for choosing

the variables that best discriminate/separate the sample

groups.

Parameters tuning

Two parameters need to be tuned in sPLS-DA: the num-

ber of discriminant vectorsH and the number of variables

to select on each dimension (PLS component). Lê Cao

et al. [16] showed that for most cases, the user could

effectively set H = G − 1. The number of variables to

select is, however, a challenging issue as tuning criteria

are often limited by the very small number of samples. In

this study, we considered two criteria to guide the choice

of this parameter, both of them are applied sequentially,

dimension per dimension.

Tuning criterion 1. One option is to use cross-validation

to choose the optimal number of selected variables in

order to avoid selection bias [22]. After this step, the full

data are analyzed given this tuned parameter. We pro-

pose to estimate the generalization error rate using k

fold cross-validation. In the case of a very small sample

size (< 15 subjects), the leave-one-out cross-validation

(denoted “loo”) can be used instead. In the specific con-

text of repeated measures and in order to respect the data

structure, the training set is composed of the measure-

ments on all experimental units except the measurements

on one subject s which defines the test set denoted X
test
w,s .

The test set prediction is defined by Y test = X
test
w,s β , where

β is the regression coefficient matrix from sPLS-DA (see

[16] for more details). The process is repeated for each

subject and the classification error rate is averaged across

all subjects. This process is tested for each number of

variables to select (see Additional file 1: Figure S3 and

Figure S6), and the “optimal” number of variables is then

determined when the lowest error rate is obtained.

Tuning criterion 2. In the case where the number of sub-

jects is too small, an ad-hoc alternative approach was used

on the whole data set by computing cor(Y ,Xu)var(Xu)

for each deflated matrix and with respect to the number

of selected variables. This is similar to that proposed by

Waaijenborg et al. [10] and Parkhomenko et al. [9]. The

number of variables selected is chosen to maximize the

criterion value.

Integrative analysis of two data sets

Similarly to the PLS-DA analysis, a more general PLSmul-

tivariate approach can be applied on the matching within

matrices Xw (or Xw∗ ) and Zw (or Zw∗ ). For this analysis

however, the aim is to integrate two data sets in a non-

supervised manner and select correlated variables from

both data sets across the subjects.

Sparse PLS

Partial Least Square regression (PLS, [23]) is in fact the

ancestor of PLS-DA and is applied in a non supervised

context, where X(N × p) and Z(N × q) are two contin-

uous within matrices of two different types of predictors

(e.g. gene expression and cytokine secretion). In PLS, both

X and Z are column standardized. To improve readabil-

ity, the subscript w is removed from both these matrices.

PLS relates X and Z by a linear multivariate model, while

also modelling the structure of X and Z. PLS is particu-

larly useful for analysing noisy, collinear, even incomplete,

high dimensional data, see [24] for a review.

PLS performs successive decompositions of X and Z into

new variables (component scores) denoted by (ξ1, . . . , ξH)

for the X-scores and (ω1, . . . ,ωH) for the Z-scores. These

scores should be few in number (H small), orthogonal

to each other within each data set, and estimated as lin-

ear combinations of the original variables from X and Z

with their weights coefficients indicated in the associated

loading vectors uh and vh (h = 1, . . . ,H) respectively. In

matrix representation, we have X = �C
T + E, Z =

�D
T + F , where E and F are the residual matrices, and

the column matrices in C and D are the coefficients from

the local regressions of the score vectors ξh (ωh) onto the

current deflated matrices defined as Xh = Xh−1 − ξhc
′
h

and Zh = Zh−1 − ωd′
h, where ch = X

T
h−1ξh/ξ

′
hξh and

dh = Y
T
h−1ωh/ω

′
hωh.

PLS relates both matrices by maximising the covariance

between each pair of scores (ξh,ωh). The PLS objective

function is:

arg max
‖uh‖=1,‖vh‖=1

cov(Xhuh,Zhvh) h = 1 . . .H . (4)

This PLS form is often referred to as “PLS2 mode A” in

the literature [25] where, similar to Canonical Correlation

Analysis, the aim is to model a ‘bidirectional’ relation-

ship between the two data sets (to maximise the common

information between the two data sets), as opposed to

a ‘unidirectional’ relationship when using a regression

model. The sparse version, sPLS, enables variable selec-

tion from both sets by including L1 penalizations on both

uh and vh simultaneously in (4), which is solved with

a Lagrangian form (see [7,8] for more details about the

methodology and the algorithm). The result is a subset of

correlated variables from both X and Z indicated in the

loading vectors (uh, vh) for each PLS dimension h, and a

set of score vectors (ξh,ωh) that are useful for graphical

representations.

Parameter tuning

As an extension to the tuning criterion 2 from the previous

section, and similar to what was proposed byWaaijenborg

et al. [10] and Parkhomenko et al. [9], the number of PLS

components and number of variables to select in each
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step can be tuned by computing cov(Xhuh,Zhvh), which

is the criterion maximized in sPLS2 mode A for each PLS

dimension h (see equation (4)). For an optimal number of

selected variables from both datasets, one would expect

this criterion to achieve also a maximum.

Results and discussion
We first present the results of a short simulation study

to show the importance of using a multilevel approach

in comparison to a standard sparse partial least square

analysis on the original data. We then apply the proposed

multilevel approach on an HIV-vaccination study.

Simulation study

Simulatedmodel

A simulation study based on the following mixed effects

model was performed:

Xk
sj = μk

j + πk
s + ǫksj, s = 1, . . . , 12, j = 1, . . . , 4,

with πk
s ∼ N(0, σ 2

πk
), ǫksj ∼ N(0, σ 2

ǫk
), where πk

s and

ǫksj are independent. From this model, 10 clusters of 100

genes each were generated (k = 1, . . . , 1000). For any

given pair of genes k1 and k2 in the same cluster, a pair-

wise correlation for Xk1
sj and X

k2
sj is specified by assuming

cor(π
k1
s ,π

k2
s ) = ρ and cor(ǫ

k1
sj , ǫ

k2
sj ) = ρ, while genes

belonging to different clusters are taken to be uncorre-

lated. The random variables πk
s and ǫksj from same cluster

are generated from the multivariate normal distribution

(π
k1
s , . . . ,π

k100
s ) ∼ N100(0100,�π ) where the variance-

covariance matrix �π is a (100 × 100) matrix with σ 2
πk

along the diagonal and ρσ 2
πk

for the others terms; and from

the multivariate normal distribution (ǫ
k1
sj , . . . , ǫ

k100
sj ) ∼

N100(0100,�ǫ)where the variance-covariancematrix�ǫ is

a (100 × 100) matrix with σ 2
ǫ along the diagonal and ρσ 2

ǫk
for the others terms.

To mimic the application, clusters of genes discrimi-

nating 4 conditions were generated (the 4 stimulations

denoted LIPO5, GAG+, GAG- and NS) , where the

mean effect of each stimulation is specified by μk =

(μk
1,μ

k
2,μ

k
3,μ

k
4)

T , according to the following:

• 2 gene clusters discriminate (LIPO5, GAG+) versus

(GAG-, NS) with μk = (4, 4, 0, 0)T and

μk = (3, 3, 0, 0)T .
• 2 gene clusters discriminate LIPO5 versus GAG+,

while GAG+ and NS have the same effect:

μk = (5, 2, 0.2, 0.2)T and μk = (5, 2, 0, 0)T .
• 2 gene clusters discriminate GAG- versus NS, while

LIPO5 and GAG+ have the same effect:

μk = c(1, 1, 5, 2)T and μk = c(0, 0, 5, 2)T .
• the 4 remaining clusters represent noisy signal (no

stimulation effect): μk = c(0, 0, 0, 0)T and

μk = (0.5, 0.5, 0.5, 0.5)T .

The intra cluster correlation was either set to ρ = 0.7 or

0.8. Different values for σ 2
πk

and σ 2
ǫk

were studied, but for

the sake of conciseness the results are only presented for

σπk
= 2 and σǫk = 0.5.

Numerical results

From the simulated data, the within matrix was computed

and applied to multilevel sPLS-DA. Figure 1 displays the

sample representation for the first 3 axes or dimensions

for one simulation run.

Firstly, in order to highlight the benefit of the multi-

level approach in comparison to themultivariate approach

without the split-up variation step, a prespecified number

of genes was selected on each dimension in order to assess

the ability of each approach to select the true relevant

genes. As expected, 3 components (linear combinations of

200 genes) were sufficient to discriminate the effect of the

4 stimulations. Multilevel sPLS-DA (applied on the within

matrix) selected 92% of the true simulated discriminative

genes as compared to 75% of the true discriminative genes

for classical sPLS-DA (applied on the original matrix), see

Table 1. The hierarchical clustering of the genes selected

by sPLS-DA on the within matrix (Figure 2) confirmed

the discriminatory ability of these genes to separate the 4

groups of samples. As expected, a group of 6 gene clusters

can be observed. On the contrary, we did not observe such

clusters when applying sPLS-DA on the original matrix

(not shown).

Secondly, leave-one-out cross-validation was performed

on each simulation run to evaluate the error rate of clas-

sification of classical sPLS-DA or multilevel sPLS-DA

(Table 2). The classification error rate was evaluated for

different number of genes selected on each component.

For example, the average classification error rate formulti-

level sPLS-DA was of 0.009 for 200 genes selected on each

of the 3 axes compared to an error rate of 0.268 for the

same parameters with classical sPLS-DA.

Application to HIV vaccine evaluation

Description of the study

The data come from a trial evaluating a vaccine based

on HIV-1 lipopeptides in HIV-negative volunteers [26].

The vaccine (HIV-1 LIPO-5 ANRS vaccine) contains five

HIV-1 amino acid sequences coding for Gag, Pol and

Nef proteins. A subsample of 12 vaccinated participants

was randomly selected and experiments were performed

before and after vaccination. The data consist of moni-

tored cytokine secretion and gene expression measure-

ments from purified in vitro stimulated Peripheral Blood

Mononuclear Cells (PBMC). Cytokine secretion was anal-

ysed by cytokine multiplex (millipore) in the supernatant

of PBMC after 11-day-culture, and the data set consists

of 10 cytokines measurements (IFNγ , IL1β , IL2, IL5, IL6,

IL10, IL13, IL17, IL21, and TNFα). Gene expression was
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Figure 1 Simulation study. Sample representation from multilevel sPLS-DA. Samples were projected onto a subspace spanned by the first 3

sPLS-DA components, based on the 200 genes selected on each of the 3 components.

analysed using the Illumina HumanHT-12 v4 Expression

BeadChip on PBMC before (W0) and 14 weeks after vac-

cination (W14), 6 hours after in vitro stimulation by either

(1) all the peptides included in the vaccine (LIPO-5), or (2)

the Gag peptides included in the vaccine (GAG+) or (3)

the Gag peptides not included in the vaccine (GAG-) or

(4) without any stimulation (NS).

Preprocessing

Background correction, log2 transformation and quan-

tile normalisation were applied on the gene expression

data using the R limma package. Probes were further

prefiltered for each time point (before and after vaccina-

tion) using a P-value detection (<1% in all samples). The

preprocessed data set contained the expression of 25,109

probes for 12 subjects for 4 types of stimulation before

vaccination (W0) and the expression of 24,687 probes

after vaccination (W14). Some samples were not available

due to DNA quality issues, resulting in 44 samples at W0

and 42 samples at W14. For the multilevel approach with

two factors, the analysis was performed on the common

prefiltered probes before and after vaccination (21,350

probes in total).

The statistical analysis was performed on the probe

expression, but the results were biologically interpreted at

the gene level.

Discriminant analysis on the transcriptomics data

First we present results obtained using a mixed model and

discuss some potential limitations of this method in the

Table 1 Simulation study

Component 1 Component 2 Component 3 All

classical sPLS-DA 58.0 75.0 87.2 78.2

multilevel sPLS-DA 82.8 95.6 93.1 92.0

Percentage of the number of true selected genes selected by classical sPLS-DA or multilevel sPLS-DA on each component or dimension (averaged over 100 simulation

runs); 200 genes were selected on each component.
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Sample
1
2
3
4
5
6
7
8
9
10
11
12

Stimulation
GAG+
GAG−
LIPO5
NS

−2

0

2

4

Figure 2 Stimulation study. Hierarchical clustering (Euclidian distance and Ward method aggregation) of the genes selected with multilevel

sPLS-DA. Samples are represented in columns and genes in rows.

context of small sample size. Then we present the results

obtained usingmultilevel sPLS-DA for one and two-factor

analyses. To shorten the length of the paper, some results

have been moved in Additional file 1. The R code used for

the analysis of this study is provided in Additional file 2.

Mixedmodel

The one-level mixed model was applied to the W14 tran-

scriptomics data. We used the mle function from the R

package nlme with the maximum likelihood method for

the estimation of the different models. A global test (like-

lihood ratio test) followed by an FDR multiple correction

(5%) identified 2308 DE genes in at least one of the stim-

ulation. Pairwise comparisons based on Wald test (FDR =

5%) were then performed to compare LIPO5 vs. NS (2108

DE genes), GAG+ vs. NS (1087 DE genes) and GAG-vs.

NS (209 DE genes). The summary of the results is avail-

able in Section 1 of the Additional file 1. In our case study,

the clustering analysis of the 100most significant differen-

tially expressed genes selected by the mixed model failed
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Table 2 Simulation study

Number of Original matrix Within matrix

genes 1 component 2 components 3 components 1 component 2 components 3 components

25 0.535 0.369 0.312 0.500 0.271 0.024

50 0.530 0.364 0.311 0.500 0.265 0.016

75 0.527 0.360 0.306 0.500 0.261 0.013

100 0.524 0.354 0.300 0.500 0.258 0.011

125 0.522 0.351 0.296 0.500 0.257 0.009

150 0.520 0.343 0.285 0.500 0.250 0.008

175 0.518 0.335 0.281 0.500 0.243 0.009

200 0.516 0.327 0.268 0.500 0.234 0.009

225 0.514 0.323 0.269 0.500 0.227 0.009

250 0.512 0.316 0.267 0.500 0.220 0.008

275 0.510 0.314 0.266 0.500 0.207 0.007

300 0.510 0.306 0.262 0.500 0.196 0.007

325 0.509 0.299 0.260 0.500 0.182 0.007

Classification error rate estimation using leave-one-out cross-validation for classical sPLS-DA and multilevel sPLS-DA, with respect to the number of genes selected on

each component (averaged over 100 simulation runs).

to discriminate the four stimulations (Additional file 1:

Figure S2).

The univariate mixed model approach is commonly

used to analyse data with repeated measurement with an

unbalanced design. However, several reasons favor the use

of a multilevel approach in this high dimensional setting.

Apart from the already mentioned problem of numerous

independent tests and the requirement to apply multiple

correction [27], another limitation is the sensitivity of the

FDR threshold (and therefore the number of declared DE

genes) to the total number of test performed. The latter

depends on the preprocessing method used to filter the

probes. Another issue encountered was problems of con-

vergence with both the maximum likelihood (ML) and

the restricted ML methods due to the small number of

samples in this data set. The asymptotic likelihood ratio

test used for fixed effects has been reported to be anti-

conservative in [28]. The authors recommended to use the

F-test which still poses the issue of the choice of the num-

ber of degrees of freedom with a small number of samples

[29,30].

Multilevel approach with one factor

A multilevel sPLS-DA analysis was performed on the

W14 transcriptomics data, with H = 3. Respectively 30,

137 and 123 genes were selected with the approach on

each dimension according to the tuning criterion 1 for

the most parcimonious model. Although k fold cross-

validation would have been preferable to use, loo was used

in this study given the small number of subjects. The

following ‘loo’ classification error rates (0.48, 0.26, 0.24)

were obtained on the first three sPLS-DA dimensions

compared to (0.48, 0.36, 0.38) when applying sPLS-DA on

the original matrices (see Additional file 1: Figure S3).

Given the expression of these 290 selected genes,

Figures 3(b) and 3(c) highlight a good separation between

the four stimulations. These sample representations

obtained from sPLS-DA reveal that the first compo-

nent discriminates the stimulation LIPO5 versus the

other stimulations, while the second component discrimi-

nates the stimulation GAG+ versus the other stimulations

and the third component discriminates the stimulation

GAG- versus the others. Therefore, the first two compo-

nents separated the stimulations according to the pep-

tides included in the vaccine. As expected there was a

clear separation between LIPO5 and other stimulation

conditions. Especially, a part of the differential effect of

LIPO5 compared to GAG+ could be due to the lipid

tail or perhaps to the effect of the other peptides of

LIPO5. GAG- and NS were not distinguishable on the

first two components of the sPLS-DA (Figure 3(b)). This

last result is not surprising as no specific response is

expected from peptides not included in the vaccine after

vaccination.

Figure 3(a) displays the unsupervised clustering of

the 290 selected probes. A cluster of 11 genes MT1M,

C20ORF127, MT2A, MT1A, MT1G, MT1F, LOC441019,

MT1X, MT1H, MTE, MT1E, was removed to improve

visualisation. These genes selected on dimension 1 were

all overexpressed in LIPO5 stimulation (see Additional

file 1: Figure S5).

Several clusters of genes which expression seemed

related to each type of stimulation could be identified.

Cluster 1 included a subset of genes downregulated in
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Figure 3Multilevel sPLS-DA analysis on the transcriptomics data with one factor (W14). (a) Unsupervised clustering analysis with Euclidian

distance and Ward method of the 290 genes selected by sPLS-DA. Samples are represented in columns and genes in rows. (b) and (c) sPLS-DA

sample representation for dimensions 1-2 (b) or 1-3 (c).

GAG-, in cluster 2 the genes were overexpressed in GAG-,

while cluster 3 included a subset of genes overexpressed in

LIPO5 and GAG+, and cluster 4 was composed of a subset

of genesmainly overexpressed in GAG+. The advantage of

sPLS-DA is its ability to select genes related to a specific

stimulation group on each component. For instance, clus-

ters 1 and 2 included 126 out of the 137 probes selected

on the third dimension which separated GAG- from the

other stimulation groups (Figure 3(c)). Cluster 3 included

19 out of the 30 probes selected on the first component,

and 12 probes from the second component in order to dis-

criminate stimulations LIPO5 andGAG+, while the fourth

cluster included 72 out of the 123 probes selected on the

second component which separated GAG+ vs. the other

stimulations (Figure 3(b)). Interestingly, some of the genes

in this cluster belong to the TNF family (TNFSF13B)

or interferon family (ISG20L2) demonstrating a specific

effect of the GAG peptides on gene expression related to

the immune response.

Note that the same analysis was also performed on W0

but identified much fewer discriminative genes (30 genes

in total), indicating that there was a change in expression

level after vaccination (see Additional file 1: Figure S8).

Multilevel approach with two factors

A multilevel sPLS-DA analysis was performed on the

within matrix Xw∗ including the time factor W0 and W14

in addition to the stimulation factor for the transcrip-

tomics data. The complexity of this cross-over design

impliedmore conditions (4×2 = 8) to be compared for 12

unique subjects. Therefore, the tuning criterion 2 gave for

each sPLSDA dimension a maximum correlation of (0.94,

0.96, 0.95) for variable selection sizes of 30, 40, 150 genes

on each dimension. A sudden drop in the correlation value

in the fourth dimension (0.62) indicated that 3 sPLS-DA

dimensions should be chosen for this analysis.

The hierarchical clustering of the 220 selected genes

indicated a very satisfying separation of both time and

stimulation factors (Figure 4(a)). The first component dis-

criminated the stimulations GAG+/LIPO5 vs. GAG-/NS

irrespective of the time, whereas the second component

reflected the time effect W0 vs. W14 (Figure 4(b)). This
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Figure 4Multilevel sPLS-DA analysis on the transcriptomics data with two factors stimulation and time. (a) Unsupervised clustering analysis

with Euclidian distance and Ward method of the 220 genes selected by sPLS-DA. sPLS-DA sample representations for dimensions 1-2 (b) or 1-3 (c).

suggests that the stimulation groups are easier to sep-

arate than the time points by the approach. On this

second dimension, relevant genes related to the immune

response were selected (CD8a, CD79a, CD19, SLAMF6).

The third component (Figure 4(c)) separated GAG+ vs.

LIPO5 irrespective of the time and several of the genes

selected on this third dimension were found to be metal-

lothionein genes (MT1M, MT2A, MT1A, MT1G, MT1F,

MT1X, MT1H, MTE, MT1E) that may be stimulated by

the lipid tail of LIPO5. From a biological point of view,

the significance of genes from metallothionein family in

the context of HIV is not clear although some results

have been recently reported [31]. These authors showed

an increased resistance to apoptosis of immune-activated

monocyte linked to the increase in Metallothionein (MT)

gene expression and intracellular zinc levels.

Integrative analysis

Multilevel sPLS enables the integration of data mea-

sured using different assays. This approach differs from

multilevel sPLS-DA as the aim is to select subsets of genes

and cytokines which are highly correlated (positively or

negatively) across the samples. While the paired structure

of the data is still taken into account in the analysis via

the decomposition of the within matrices X∗

w and Z
∗

w, the

analysis is completely unsupervised: no prior knowledge

about the samples groups is included.

Multilevel approach

Multilevel sPLS was applied on the within matrices of

the gene and cytokine data sets after vaccination. Given

the very small number of cytokines, all cytokines were

selected in the model, and the tuning of the number

of variables to select was only performed on the gene

expression data set. Respectively, a selection of 50, 1

and 60 genes was performed each of the sPLS dimen-

sion, corresponding to a correlation of (0.86, 0.62 and

0.84). A drop of the subsequent correlations for the

other dimensions guided the choice of 3 components in

the model.
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Although unexpected and indicated by the tuned cor-

relation value of 0.62, the selection of one single gene on

the second dimension was not surprising given the sam-

ple representation that was obtained (see Additional file 1:

Figure S11): while the first and third dimensions separated

LIPO5, GAG+ and GAG-/NS, the second dimension did

not seem to highlight any interesting pattern in the data.

The approach might reveal some unknown phenomenon

in the data for this component that would need to be fur-

ther investigated.

Nonetheless, sPLS multilevel was able to identify very rel-

evant information from both data sets. Graphical tools

help to unravel the correlation structure between the

two data set such as Clustered Image Maps (CIM).

Figure 5 reveals clusters of selected genes associated

with cytokines secretion. These genes were not known to
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Figure 5 Integrative analysis of gene expression and cytokine secretion for W14. Clustered Image Maps (CIM) obtained from multilevel sPLS.

Selected genes are represented in columns and cytokines in rows.
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participate in the cytokines pathways but can be seen as

gene signatures to predict future cytokine response. For

example Figure 5 highlights relevant clusters of cytokines,

such as the proximity of the two T-Helper type 2 (Th2)

cytokines IL5 and IL13. Also, IL17 and IL21 have often

been associated in the type 17 response. The correlations

between genes and cytokines were similar for the pairs

(IL5, IL13), (IL21,IL1b) and (TNF,IL6) underlying poten-

tial similar pathways related to the production of these

cytokines.

Conclusion
In this paper, we have proposed a two-step analysis com-

bining a multilevel approach and a multivariate approach

to analyze repeated measures of gene expression. The

multilevel approach first extracts the within-sample varia-

tion while the multivariate approach applied on the within

matrix takes into account the dependency between the

variables. The multilevel approach was extended for one

and two factors analyses.

Two multilevel variants were proposed with either

sPLS-DA or sPLS. The multilevel sPLS-DA approach

selects genes separating the groups of subjects on a single

data set. The simulation study comparingmultilevel sPLS-

DA and the sPLS-DA applied on the original data demon-

strated the good performance of themodel. Themultilevel

sPLS approach integrates two experimentsmade on differ-

ent platforms but on the same subjects, and selects subsets

of correlated variables from both sets.

The application of both types of approaches on the

HIV-1 vaccine trial showed their ability to highlight the

stimulation groups and to select biologically relevant

genes related to immune response. Hence, our combined

multilevel approach may help in finding signatures of

vaccine effect and allows for a better understanding of

immunological mechanisms activated by the interven-

tion. Future work will include a thorough analysis on the

gene/probe annotations to fully understand the mecha-

nistic link between gene differential expression, cytokine

secretion according to the various stimulations.

Endnote
ahttp://www.math.univ-toulouse.fr/∼biostat/mixOmics.
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Bordeaux, F-33000, FRANCE. 2 INSERM, ISPED, centre INSERM
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16, UPEC Université, Créteil, FRANCE. 5Vaccine Research Institute ANRS, Paris,

France.

Received: 21 May 2012 Accepted: 26 November 2012

Published: 6 December 2012

References

1. Storey JD, Xiao W, Leek JT, Tompkins RG, Davis RW: Significance analysis

of time course microarray experiments. Proc National Acad Sci USA

2005, 102(36):12837–12842.

2. Li H, Wood C, Getchell T, Getchell M, Stromberg A: Analysis of

oligonucleotide array experiments with repeated measures using

mixedmodels. BMC Bioinformatics 2004, 5:209. [http://www.

biomedcentral.com/1471-2105/5/209]

3. Karlovich C, Duchateau-Nguyen G, Johnson A, McLoughlin P, Navarro M,

Fleurbaey C, Steiner L, Tessier M, Nguyen T, Wilhelm-Seiler M, Caulfield J:

A longitudinal study of gene expression in healthy individuals. BMC

Med Genomics 2009, 2:33.

4. Palermo RE, Patterson LJ, Aicher LD, Korth MJ, Robert-Guroff M, Katze MG:

Genomic Analysis Reveals Pre- and Postchallenge Differences in a

Rhesus Macaque AIDS Vaccine Trial: Insights into Mechanisms of

Vaccine Efficacy. J Virol January 15 2011, 85(2):1099–1116.

5. Kitano H: Computational Systems Biology. Nature 6912, 420:206–210.
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