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A novel approach for biomarker selection and
the integration of repeated measures
experiments from two assays
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Abstract

Background: High throughput •omics• experiments are usually designed to compare changes observed between
di�erent conditions (or interventions) and to identify biomarkers capable of characterizing each condition. We
consider the complex structure of repeated measurements from di�erent assays where di�erent conditions are
applied on the same subjects.

Results: We propose a two-step analysis combining a multilevel approach and a multivariate approach to reveal
separately the e�ects of conditions within subjects from the biological variation between subjects. The approach is
extended to two-factor designs and to the integration of two matched data sets. It allows internal variable selection to
highlight genes able to discriminate the net condition e�ect within subjects. A simulation study was performed to
demonstrate the good performance of the multilevel multivariate approach compared to a classical multivariate
method. The multilevel multivariate approach outperformed the classical multivariate approach with respect to the
classi“cation error rate and the selection of relevant genes. The approach was applied to an HIV-vaccine trial
evaluating the response with gene expression and cytokine secretion. The discriminant multilevel analysis selected a
relevant subset of genes while the integrative multilevel analysis highlighted clusters of genes and cytokines that
were highly correlated across the samples.

Conclusions: Our combined multilevel multivariate approach may help in “nding signatures of vaccine e�ect and
allows for a better understanding of immunological mechanisms activated by the intervention. The integrative
analysis revealed clusters of genes, that were associated with cytokine secretion. These clusters can be seen as gene
signatures to predict future cytokine response. The approach is implemented in theRpackagemixOmics
(http://cran.r-project.org/) with associated tutorials to perform the analysisa.

Background
Recent advances in high throughput •omics• technolo-
gies enable quantitative measurements of expression or
abundance of biological molecules in a whole biological
system. Various popular omics platforms in systems biol-
ogy include transcriptomics, proteomics, cytomics and
metabolomics. These experiments are usually designed to
compare changes observed between di�erent conditions
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1Univ. Bordeaux, ISPED, centre INSERM U-897-Epidémiologie-Biostatistique,
Bordeaux, F-33000, FRANCE
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F-33000, FRANCE
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or groups and are often used to identify biomarkers capa-
ble of characterising pathological states or response to
treatment.

The decreasing costs of these high-throughput plat-
forms now enable repeated measures experiments on the
same individuals or biological samples. Such experiments
allow a substantial gain in information. For instance, lon-
gitudinal designs are more powerful as they reduce the
noise due to inter individual variability, as long as the
correlation between repeated observations is taken into
account. There exists an abundant literature on the anal-
ysis of repeated measurements of omics data [1,2]. In
this context, a common approach is to apply a univariate
mixed model on each gene followed by multiple test-
ing correction [3]. However, this approach disregards the

© 2012 Liquet et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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dependency between genes, and due to the high dimen-
sionality of the data, numerous hypotheses tests must be
performed.

The mixed model approach has been used for the analy-
sis of one single data type (e.g. gene expression). However,
a growing number of high-throughput data are gener-
ated in standard clinical trials. For example, the evaluation
of HIV vaccine in phase I/II trials incorporates mea-
surements of counts of numerous types of cell, of the
production of intra and extracellular cytokines and of gene
expression [4]. The integration of such multi-layer infor-
mation can help unravel the complexities of a biological
system, as each functional level is hypothesized to be
related to each other [5]. However the integration of omics
data is a challenging task. Firstly, the large number of mea-
sured biological entities makes it very di�cult to obtain
a good overview or understanding of the system under
study. Secondly, the small number of samples or patients
makes statistical inference di�cult and argue for using the
maximum amount of available information. Thirdly, the
integration of heterogeneous data represents an analyti-
cal and numerical challenge when trying to “nd common
patterns in data from di�erent origins.

In recent years, several multivariate approaches have
been proposed to combine two omics data, often in
an unsupervised framework. In contrast to univariate
repeated measures analysis, these linear multivariate
approaches take into account the dependency between
genes, are able to handle large and noisy data sets and do
not face computational issues in the high dimensional case
as matrix inversions are avoided. Most importantly in the
context of this study, they enable the integration of data
coming from di�erent platforms and provide interpretable
visualisation tools. These approaches aim at selecting cor-
related biological entities from two [6-11] or more data
sets [12]. In particular, with sparse Partial Least Squares
(sPLS) we have shown that the integrative analysis of
large scale omics datasets could generate new knowledge
not accessible by the analysis of a single data type alone
[7,8]. The biological relevance of this approach has been
illustrated recently in some studies [13,14].

The ”exibility and versatility of PLS also enable a
supervised framework through PLS-Discriminant Analy-
sis (PLS-DA [15]). A variant of which has recently been
proposed to select discriminative features that best sep-
arate the di�erent conditions (sPLS-DA, [16]). sPLS-DA
was shown to give similar performances to classical clas-
si“cation methods such as Machine Learning approaches
and variants of Linear Discriminant Analysis and was
recently applied in a biological study [17].

In this paper, we consider a two-step approach to model
the correlation between repeated measurements while
taking advantage of the multivariate approaches. We “rst
propose to extract the within-sample variation [18-20]

before analysing this transformed data set using sPLS-
DA for a discriminant analysis or sPLS for an integrative
analysis.

Starting from the classical mixed-model, we present the
principle of a multilevel analysis to extract the within-
sample deviation of the data and we extend the approach
to a two-factor analysis. The within data set is then anal-
ysed with either sPLS-DA to select discriminative genes
between the groups of subjects on a single data set, or
with sPLS to select subsets of correlated variables from
two data sets. A simulation study is performed which
demonstrates the good performance of multilevel sPLS-
DA compared to a classical sPLS-DA. The approach is
then illustrated on an HIV vaccination study, where the
e�ect of a lipopeptide based vaccine was explored by mea-
suring before and after vaccination various components
of the immune response, including gene expression and
cytokine secretion. These repeated measurement were
made in severalin vitro conditions on Peripheral Blood
Mononuclear Cells: •NS• (no stimulation); HIV Gag pep-
tides •GAG+• (peptides included in the vaccine), HIV Gag
peptides •GAG-• (peptides not included in the vaccine)
and •LIPO5• (all “ve peptides included in the vaccine).

Methods
Notations
Let X(N × p) and Z(N × q) represent two data matrices
(e.g. gene expression and cytokine secretion). We denote
by N the total number of samples (or rows) in the data,
and by n the number of experimental units (or unique
subjects),p (resp.q) is the total number of genes (resp.
cytokines), also called variables or predictors. The dummy
matrix Y(N × G) indicates the group/treatment of the
samples, withG the total number of groups.

Multilevel approach
We “rst present the mixed-e�ect model as a pedagogi-
cal tool and then introduce the concept of the multilevel
approach based on the •split-upŽ variation. Despite the
fact that some similarities exist between the mixed-e�ect
model and the multilevel •split-upŽ variation approach, we
emphasize that the latter is performed completely inde-
pendently from the estimation of the mixed-e�ect model.
Moreover, the mixed model relies on certain assumptions
(such as Gaussian distribution of random e�ects) that the
split-up variation approach does not require.

Mixed-e�ect model
Let Xk

sj be the gene expression of a given genek for subject
s with stimulation j. In this context, the mixed model is
de“ned by:

Xk
sj = µ k

j + � k
s + � k

sj, s= 1,. . . ,n, j = 1,. . . ,Gs

= µ k
·· + � k

j + � k
s + � k

sj
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where for a given genek, µ k
j measures the “xed e�ect

of stimulation j, which can be further decomposed into
µ k

··, the overall mean stimulation e�ect, plus� k
j which is

the di�erential e�ect for stimulation j. The � k
s are inde-

pendent random variables following a normal distribu-
tion N (0,� 2

� ,k), which take into account the dependency
between the repeated measures made on the same subject
s, the residuals� k

sj are independent random variables fol-

lowing aN (0,� 2
� ,k) distribution. Note that the number of

stimulation for each subject (Gs) may di�er. However, for
each subjects we observe no more than one observation
for each stimulation j, thus the subject e�ect interac-
tions with the stimulation factor are confounded with the
residuals. We also assume that� k

s and� k
sj are independent.

This model is known also as the one-way unbalanced
random-e�ects ANOVA. A simple approach for identi-
fying di�erentially expressed (DE) genes in this model is
to test the stimulation e�ect for each gene and apply a
multiple testing correction (FDR from [21] set to 5%). Fol-
lowing this global test, pairwise comparison can then be
applied between two stimulations, followed by multiple
correction (e.g. FDR, 5%). Some limitations of this stan-
dard approach are discussed in the Results and discussion
Section. The main advantage of the mixed model is the
introduction of the random element� k

s , which is speci“c
to the subjectsand represents the between-subject devi-
ation. In the same spirit, the multilevel approach based
on the split-up variation focusses on separating the dif-
ferent sources of variation: the within-subject deviation
(•variationŽ) and the between-subject deviation.

Split-up variation
As suggested by Westerhuis et al. [19] in the mixed model
framework, the observationxk

sj can be decomposed into:

xk
sj = xk

··����
o�set

+ (xk
s· Š xk

··)� �� �
between-subject deviation

+ (xk
sj Š xk

s·)
� �� �

within-subject deviation

(1)

where xk
·· = 1

N

Gs�

j= 1

n�

s= 1
xk

sj and xk
s· = 1

Gs

Gs�

j= 1
xk

sj. The o�-

set term xk
·· is an estimation ofµ k

··, the between-subject
deviation is an estimation of� k

s and the within-subject
deviation is an estimation of� k

j + � k
sj and can be further

decomposed as:

(xk
sj Š xk

s·)
� �� �

within-subject deviation

= (xk
·j Š xk

··)
� �� �

Stimulation e�ect

+ (xk
sj Š xk

s· Š xk
·j + xk

··)
� �� �

residual

where xk
·j = 1

nj

� nj
s= 1 xk

sj, with nj the number of sub-
ject undergoing stimulation j. Therefore, a part of the

within-subject deviation is explained by the stimulation
e�ect.

Let X be the (N × p) gene expression matrix ons =
1,. . . ,n subjects with Gs stimulations (in the balanced
caseN = n × G, otherwiseN =

� n
s= 1 Gs). According to

equation (1):

X = X··����
o�set term

+ Xb����
between-subject deviation

+ Xw����
within-subject deviation

The matrix X·· represents the o�set term de“ned as
1NxT

·· , where1N is the(N × 1) matrix containing ones and
xT

·· = (x1
··, . . . ,xp

··); Xb is the between-subject matrix of size
(N × p) de“ned by concatenating1Gsx

T
bs for each subject

into Xb with xT
bs = (x1

s· Š x1
··, . . . ,xp

s· Š xp
··); Xw = X Š Xs·

is the within-subject matrix of size(N × p), with Xs· the
matrix de“ned by concatenating the matrices1Gsx

T
s· for

each subject intoXs·, with xT
s· = (x1

s·, . . . ,xp
s·).

Similarly to the Analysis of Variance, it is easy to show
that the sum of squares can be separated into three parts:

||X||2 = || X··||2 + || Xb||2 + || Xw||2, (2)

where ||X||2 = trace(XT X). Equation (2) can be used
to evaluate the magnitude of the di�erent sources of
variation.

The mixed-model described earlier can provide an anal-
ysis for repeated measurements data in an unbalanced
design. It can be viewed as an extension of a paired t-test
to test the di�erences between paired observations. How-
ever, to tackle some of the previously mentioned limita-
tions of the approach, we propose to combine a multilevel
approach and a multivariate approach as an interesting
alternative. Indeed, the multilevel step splits the di�er-
ent parts of the variation while taking into account the
repeated measurements on each subject. Since the stim-
ulation e�ect from each subject can be separated from
the between subject deviation (variation), it is possible to
examine the di�erences in stimulation e�ect within the
subjects in a much easier way than without the separation
of the di�erence sources of variation [19]. Westerhuis et.
al (2010) provided the rationale and showed the bene“t
of the multilevel approach in the analysis of multivari-
ate paired (cross-over) data. In this paper where we aim
at identifying genes discriminating the di�erent stimula-
tions, we propose to apply a multivariate approach on the
within matrix Xw which includes the stimulation e�ect,
in the same spirit as in [18-20]. This approach is more
powerful, as it takes into account not only the depen-
dency between genes via the multivariate approach, but
also the repeated measures between individuals and the
stimulation e�ects via Xw.
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Extended method for two factors
We propose to extend this approach for data with two
factors: the time (•before• and •after• vaccination), in addi-
tion to the stimulation factor. Let Xk

sjt be the expres-
sion of a given genek for subject s with stimulation
j at time t = 1, 2. In this context, the mixed model
is de“ned as:

�
�

	

Xk
sjt = µ k

jt + � k
s + (�� ) k

sj + (�� ) k
st + � k

sjt,

µ k
jt = µ k

··· + � k
j + � k

t + (��) k
jt ,

where for a given genek, µ k
·· is the gene population mean

(o�set term); � k
j measures the “xed e�ect of stimula-

tion j; � k
t measures the “xed e�ect of timet; (��) k

jt is
the interaction e�ect between the stimulationj and the
time t; � k

s � N(0,� 2
� k

) is the random subject e�ect;

(�� ) k
sj � N(0,� 2

�� k
) measures the random interac-

tion e�ect between the subjects and the stimulation j;
(�� ) k

st � N(0,� 2
�� k

) measures the random interaction
e�ect between the subjects and the time t; the residu-
als � sjt � N(0,� 2

� k
) and the variables� k

s , � k
sjt, (�� ) k

sj and

(�� ) k
st are assumed to be independent. In the context of

our application, the potential subject interactions e�ect
with the stimulation and the time e�ect are confounded
with the residuals terms since only one observation is
available per subject for each level of both time and
stimulation factors.

According to the mixed model, we have:

xk
sjt = xk

···����
o�set term

+ (xk
s·· Š xk

···)� �� �
between-subject deviation

+ (xk
sjt Š xk

s··)
� �� �

within-subject deviation

where the within-subject deviation can be further decom-
posed as:

(xk
sjt Š xk

s··) = (xk
·j· Š xk

···)
� �� �

Stimulation e�ect

+ (xk
··t Š xk

···)� �� �
Time e�ect

+ (xk
·jt Š xk

·j· Š xk
··t + xk

···)
� �� �

interaction e�ect

+ (xk
sj· Š xk

·j· Š xk
s·· + xk

···)
� �� �

random inter: subject× Stimulation

+ (xk
s·i Š xk

··t Š xk
s·· + xk

···)� �� �
random inter: subject× Time

+ (xk
sjt Š xk

·jt Š xk
sj· Š xk

s·t + xk
·j· + xk

··t + xk
s·· Š xk

···)
� �� �

Residual

The matrix representation gives:

Xw����
within-subject deviation

= XStimulation + XTime + XStimulation× Time + XResidual� �� �
Xw�

+ Xsubject× Stimulation + Xsubject× Time
� �� �

random interaction

Similar to the one-factor decomposition, the multivari-
ate approach will be applied on the within matrixXw� ,
which includes stimulation, time and interaction e�ects.

Discriminant analysis of one data set
Once the multilevel approach has been applied to split
up the variation in the data, a variant of the multivariate
approach PLS Discriminant Analysis (called sparse PLS-
DA) is applied on the within matrixXw or Xw� in order to
select discriminative genes between the groups of subjects
on a single data set.

Sparse PLS-DA
Linear Discriminant Analysis (LDA) and Partial Least
Squares Discriminant Analysis (PLS-DA, [15]) are
exploratory approaches seeking the optimal linear com-
binations of variables (genes) which best separate the
sample groups. PLS-DA has been found to be a promising
alternative to LDA since the latter faces numerical limita-
tions when dealing with too many correlated predictors.
Let X(N × p) be thewithin predictor matrix (to improve
readability, the subscriptw is removed) andY(N × G)
the response dummy matrix indicating the group of
each sample. In PLS-DA,X is column standardized. The
PLS-DA objective function to solve can be written as [15]:

max
u

cor(Y,Xu)var(Xu), (3)

where we denote by� = Xu the discriminant direc-
tion vector, which is a linear combination of the original
variables. The vectoru is the associated loading vector
indicating the weights of each variable in the linear com-
bination � . Once step (3) has been performed and the “rst
weight vectoru1 has been extracted, both matricesY and
X arede”ated such that the following loading vectoru2 is
orthogonal to the previous one. PLS-DA therefore outputs
a set of loading weight vectorsu1,u2, . . . ,uH and associ-
ated discriminant direction vectors� 1, � 2, . . . , � H , where
H is the number of PLS-DA dimensions (or de”ations).

The sparse version proposed by L�e Cao et al. [16] uses
the Lagrange form of PLS-DA to include aL1 constraint
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on u in order to ensure that someuj will be estimated
as exactly zero (j = 1,. . . ,p). Thus, these corresponding
variables will not contribute to the discriminant direction.
sPLS-DA therefore allows variable selection for choosing
the variables that best discriminate/separate the sample
groups.

Parameters tuning
Two parameters need to be tuned in sPLS-DA: the num-
ber of discriminant vectorsH and the number of variables
to select on each dimension (PLS component). L�e Cao
et al. [16] showed that for most cases, the user could
e�ectively set H = G Š 1. The number of variables to
select is, however, a challenging issue as tuning criteria
are often limited by the very small number of samples. In
this study, we considered two criteria to guide the choice
of this parameter, both of them are applied sequentially,
dimension per dimension.

Tuning criterion 1. One option is to use cross-validation
to choose the optimal number of selected variables in
order to avoid selection bias [22]. After this step, the full
data are analyzed given this tuned parameter. We pro-
pose to estimate the generalization error rate usingk
fold cross-validation. In the case of a very small sample
size (< 15 subjects), the leave-one-out cross-validation
(denoted •looŽ) can be used instead. In the speci“c con-
text of repeated measures and in order to respect the data
structure, the training set is composed of the measure-
ments on all experimental units except the measurements
on one subjects which de“nes the test set denotedXtest

w,s .
The test set prediction is de“ned byY test = Xtest

w,s � , where
� is the regression coe�cient matrix from sPLS-DA (see
[16] for more details). The process is repeated for each
subject and the classi“cation error rate is averaged across
all subjects. This process is tested for each number of
variables to select (see Additional “le 1: Figure S3 and
Figure S6), and the •optimalŽ number of variables is then
determined when the lowest error rate is obtained.

Tuning criterion 2. In the case where the number of sub-
jects is too small, an ad-hoc alternative approach was used
on the whole data set by computingcor(Y,Xu)var(Xu)
for each de”ated matrix and with respect to the number
of selected variables. This is similar to that proposed by
Waaijenborg et al. [10] and Parkhomenko et al. [9]. The
number of variables selected is chosen to maximize the
criterion value.

Integrative analysis of two data sets
Similarly to the PLS-DA analysis, a more general PLS mul-
tivariate approach can be applied on the matching within
matrices Xw (or Xw� ) and Zw (or Zw� ). For this analysis
however, the aim is to integrate two data sets in a non-
supervised manner and select correlated variables from
both data sets across the subjects.

Sparse PLS
Partial Least Square regression (PLS, [23]) is in fact the
ancestor of PLS-DA and is applied in a non supervised
context, whereX(N × p) and Z(N × q) are two contin-
uouswithin matrices of two di�erent types of predictors
(e.g.gene expression and cytokine secretion). In PLS, both
X and Z are column standardized. To improve readabil-
ity, the subscriptw is removed from both these matrices.
PLS relatesX and Z by a linear multivariate model, while
also modelling the structure ofX and Z. PLS is particu-
larly useful for analysing noisy, collinear, even incomplete,
high dimensional data, see [24] for a review.
PLS performs successive decompositions ofX and Z into
new variables (component scores) denoted by(� 1, . . . , � H )
for the X-scores and(� 1, . . . , � H ) for the Z-scores. These
scores should be few in number (H small), orthogonal
to each other within each data set, and estimated as lin-
ear combinations of the original variables fromX and Z
with their weights coe�cients indicated in the associated
loading vectorsuh and vh (h = 1,. . . ,H) respectively. In
matrix representation, we haveX = � CT + E, Z =
� DT + F, whereE and F are the residual matrices, and
the column matrices inC and D are the coe�cients from
the local regressions of the score vectors� h (� h) onto the
current de”ated matrices de“ned asXh = XhŠ1 Š � hc�

h
and Zh = ZhŠ1 Š � d�

h, where ch = XT
hŠ1� h/ � �

h� h and
dh = YT

hŠ1� h/ � �
h� h.

PLS relates both matrices by maximising the covariance
between each pair of scores(� h, � h). The PLS objective
function is:

arg max
� uh�= 1,� vh�= 1

cov(Xhuh,Zhvh) h = 1. . . H. (4)

This PLS form is often referred to as •PLS2 mode AŽ in
the literature [25] where, similar to Canonical Correlation
Analysis, the aim is to model a •bidirectional• relation-
ship between the two data sets (to maximise the common
information between the two data sets), as opposed to
a •unidirectional• relationship when using a regression
model. The sparse version, sPLS, enables variable selec-
tion from both sets by includingL1 penalizations on both
uh and vh simultaneously in (4), which is solved with
a Lagrangian form (see [7,8] for more details about the
methodology and the algorithm). The result is a subset of
correlated variables from bothX and Z indicated in the
loading vectors(uh,vh) for each PLS dimensionh, and a
set of score vectors(� h, � h) that are useful for graphical
representations.

Parameter tuning
As an extension to the tuning criterion 2 from the previous
section, and similar to what was proposed by Waaijenborg
et al. [10] and Parkhomenko et al. [9], the number of PLS
components and number of variables to select in each
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step can be tuned by computingcov(Xhuh,Zhvh), which
is the criterion maximized in sPLS2 mode A for each PLS
dimensionh (see equation (4)). For an optimal number of
selected variables from both datasets, one would expect
this criterion to achieve also a maximum.

Results and discussion
We “rst present the results of a short simulation study
to show the importance of using a multilevel approach
in comparison to a standard sparse partial least square
analysis on the original data. We then apply the proposed
multilevel approach on an HIV-vaccination study.

Simulation study
Simulated model
A simulation study based on the following mixed e�ects
model was performed:

Xk
sj = µ k

j + � k
s + � k

sj, s= 1,. . . , 12, j = 1,. . . , 4,

with � k
s � N(0,� 2

� k
), � k

sj � N(0,� 2
� k

), where � k
s and

� k
sj are independent. From this model, 10 clusters of 100

genes each were generated (k = 1,. . . , 1000). For any
given pair of genesk1 and k2 in the same cluster, a pair-
wise correlation forXk1

sj and Xk2
sj is speci“ed by assuming

cor(� k1
s , � k2

s ) = � and cor(� k1
sj , � k2

sj ) = � , while genes
belonging to di�erent clusters are taken to be uncorre-
lated. The random variables� k

s and � k
sj from same cluster

are generated from the multivariate normal distribution
(� k1

s , . . . , � k100
s ) � N100(0100, � � ) where the variance-

covariance matrix� � is a (100 × 100) matrix with � 2
� k

along the diagonal and�� 2
� k

for the others terms; and from

the multivariate normal distribution (� k1
sj , . . . , � k100

sj ) �
N100(0100, � � ) where the variance-covariance matrix� � is
a (100× 100) matrix with � 2

� along the diagonal and�� 2
� k

for the others terms.
To mimic the application, clusters of genes discrimi-

nating 4 conditions were generated (the 4 stimulations
denoted LIPO5, GAG+, GAG- and NS) , where the
mean e�ect of each stimulation is speci“ed byµ k =
(µ k

1,µ k
2,µ k

3,µ k
4)T , according to the following:

€ 2 gene clusters discriminate (LIPO5, GAG+) versus
(GAG-, NS) withµ k = (4, 4, 0, 0)T and
µ k = (3, 3, 0, 0)T .

€ 2 gene clusters discriminate LIPO5 versus GAG+,
while GAG+ and NS have the same e�ect:
µ k = (5, 2, 0.2, 0.2)T andµ k = (5, 2, 0, 0)T .

€ 2 gene clusters discriminate GAG- versus NS, while
LIPO5 and GAG+ have the same e�ect:
µ k = c(1, 1, 5, 2)T andµ k = c(0, 0, 5, 2)T .

€ the 4 remaining clusters represent noisy signal (no
stimulation e�ect): µ k = c(0, 0, 0, 0)T and
µ k = (0.5, 0.5, 0.5, 0.5)T .

The intra cluster correlation was either set to� = 0.7 or
0.8. Di�erent values for� 2

� k
and � 2

� k
were studied, but for

the sake of conciseness the results are only presented for
� � k = 2 and� � k = 0.5.

Numerical results
From the simulated data, the within matrix was computed
and applied to multilevel sPLS-DA. Figure 1 displays the
sample representation for the “rst 3 axes or dimensions
for one simulation run.

Firstly, in order to highlight the bene“t of the multi-
level approach in comparison to the multivariate approach
without the split-up variation step, a prespeci“ed number
of genes was selected on each dimension in order to assess
the ability of each approach to select the true relevant
genes. As expected, 3 components (linear combinations of
200 genes) were su�cient to discriminate the e�ect of the
4 stimulations. Multilevel sPLS-DA (applied on the within
matrix) selected 92% of the true simulated discriminative
genes as compared to 75% of the true discriminative genes
for classical sPLS-DA (applied on the original matrix), see
Table 1. The hierarchical clustering of the genes selected
by sPLS-DA on the within matrix (Figure 2) con“rmed
the discriminatory ability of these genes to separate the 4
groups of samples. As expected, a group of 6 gene clusters
can be observed. On the contrary, we did not observe such
clusters when applying sPLS-DA on the original matrix
(not shown).

Secondly, leave-one-out cross-validation was performed
on each simulation run to evaluate the error rate of clas-
si“cation of classical sPLS-DA or multilevel sPLS-DA
(Table 2). The classi“cation error rate was evaluated for
di�erent number of genes selected on each component.
For example, the average classi“cation error rate for multi-
level sPLS-DA was of 0.009 for 200 genes selected on each
of the 3 axes compared to an error rate of 0.268 for the
same parameters with classical sPLS-DA.

Application to HIV vaccine evaluation
Description of the study
The data come from a trial evaluating a vaccine based
on HIV-1 lipopeptides in HIV-negative volunteers [26].
The vaccine (HIV-1 LIPO-5 ANRS vaccine) contains “ve
HIV-1 amino acid sequences coding for Gag, Pol and
Nef proteins. A subsample of 12 vaccinated participants
was randomly selected and experiments were performed
before and after vaccination. The data consist of moni-
tored cytokine secretion and gene expression measure-
ments from puri“ed in vitro stimulated Peripheral Blood
Mononuclear Cells (PBMC). Cytokine secretion was anal-
ysed by cytokine multiplex (millipore) in the supernatant
of PBMC after 11-day-culture, and the data set consists
of 10 cytokines measurements (IFN	 , IL1� , IL2, IL5, IL6,
IL10, IL13, IL17, IL21, and TNF� ). Gene expression was
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Figure 1 Simulation study. Sample representation from multilevel sPLS-DA. Samples were projected onto a subspace spanned by the “rst 3
sPLS-DA components, based on the 200 genes selected on each of the 3 components.

analysed using the Illumina HumanHT-12 v4 Expression
BeadChip on PBMC before (W0) and 14 weeks after vac-
cination (W14), 6 hours afterin vitro stimulation by either
(1) all the peptides included in the vaccine (LIPO-5), or (2)
the Gag peptides included in the vaccine (GAG+) or (3)
the Gag peptides not included in the vaccine (GAG-) or
(4) without any stimulation (NS).

Preprocessing
Background correction, log2 transformation and quan-
tile normalisation were applied on the gene expression
data using theR limma package. Probes were further
pre“ltered for each time point (before and after vaccina-
tion) using a P-value detection (< 1% in all samples). The
preprocessed data set contained the expression of 25,109

probes for 12 subjects for 4 types of stimulation before
vaccination (W0) and the expression of 24,687 probes
after vaccination (W14). Some samples were not available
due to DNA quality issues, resulting in 44 samples at W0
and 42 samples at W14. For the multilevel approach with
two factors, the analysis was performed on the common
pre“ltered probes before and after vaccination (21,350
probes in total).

The statistical analysis was performed on the probe
expression, but the results were biologically interpreted at
the gene level.

Discriminant analysis on the transcriptomics data
First we present results obtained using a mixed model and
discuss some potential limitations of this method in the

Table 1 Simulation study

Component 1 Component 2 Component 3 All

classical sPLS-DA 58.0 75.0 87.2 78.2

multilevel sPLS-DA 82.8 95.6 93.1 92.0

Percentage of the number of true selected genes selected by classical sPLS-DA or multilevel sPLS-DA on each component or dimension (averaged over 100 simulation
runs); 200 genes were selected on each component.
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