Supplementary tables

	Parameters notation by Bentele et al., 2004				
f_{degr}	f _{degrad}				
k_{Apop}	k_Apoptosome				
k _d	K_DEGRAD				
	K_DEGRAD_deathSub				
k_{ds}	K_DEGRAD_steady				
k _{DISC_FLIP}	k_DISC_FLIP				
k _{DISC_pro8}	k_DISC_procas8				
k _{DFp8}	k_DISC_FLIP_to_cas8_IM				
k _{LR}	k_LR				
k_{32}	$k_{cas_{2}2}$				
k_{36}	k_cas_3_6				
k ₃₈	$0.145 \cdot k_{cas}_{6}_{8}$				
k ₆₈	k_cas_6_8				
k ₇₈	k_cas_8_7				
k ₈₃	k_cas_8_3				
k _{3act}	$0.18 \cdot k_{cas7_apop_activity}$				
k _{36act}	k_cas36_apop_activity				
k _{39IAP}	k_cas39_IAP				
k _{7act}	k_cas7_apop_activity				
k _{8Bid}	k_cas8_Bid				
Km ₃₂	<i>Km_cas_</i> 3_2				
<i>Km</i> ₃₆	<i>Km_cas_</i> 3_69				
Km _{367act}	Km_cas367_apop_activity				
<i>Km</i> ₃₈	<i>Km_cas_</i> 6_8				
<i>Km</i> ₆₈	<i>Km_cas_</i> 6_8				
Km ₇₈	<i>Km_cas_</i> 8_7				
Km _{8Bid}	Km_cas28_Bid				
<i>Km</i> ₈₉₃	<i>Km_cas_</i> 89_3				
x _{aa}	$x_{apop \ activity}$				
Parameters notation in the paper	Parameters notation by Neumann <i>et al.</i> , 2004				
k _{p43-FLIP_IKK}	k13				

Table 1S – Notations of parameters used in the paper and in the original models

.№	Reactions	Kinetic laws	Rate constants	Comments ¹
JN≌		Kineuc laws	$(nM^{-1}min^{-1}; min^{-1})$	Comments
nr1	$CD95L + CD95R:FADD \rightarrow DISC$	$n_{k1} \cdot C_{CD95L} \cdot C_{CD95R}$	1.0	k1, Neumann et al., 2010
nr2	$pro8 + DISC \rightarrow DISC: pro8$	$n_{k2} \cdot C_{DISC} \cdot C_{pro8}$	1.277248E - 4	k2, Neumann et al., 2010
nr3	$DISC + FLIPL \rightarrow DISC:FLIPL$	$n_{k3} \cdot C_{DISC} \cdot C_{FLIPL}$	0.6693316	k3, Neumann et al., 2010
nr5	DISC:pro8 + pro8 \rightarrow 2 x p43p41	$n_{k5} \cdot C_{DISC:pro8} \cdot C_{pro8}$	5.946569 <i>E</i> – 4	k5, Neumann et al., 2010
nr6	DISC:pro8 + FLIPL \rightarrow p43-FLIP	$n_{k6} \cdot C_{DISC:pro8} \cdot C_{FLIPL}$	0.9999999	<i>k</i> 6, Neumann <i>et al.</i> , 2010
nr7	$DISC:pro8 + FLIPS \rightarrow DISC:pro8:FLIPS$	$n_{k7} \cdot C_{DISC:pro8} \cdot C_{FLIPS}$	0.8875063	k7, Neumann et al., 2010
nr8	DISC:FLIPL + pro8 \rightarrow p43FLIP	$n_{k5} \cdot C_{DISC:FLIPL} \cdot C_{pro8}$	5.946569 <i>E</i> – 4	k5, Neumann et al., 2010
nr9	$DISC:FLIPL + FLIPL \rightarrow DISC:FLIPL_2$	$n_{k6} \cdot C_{DISC:FLIPL} \cdot C_{FLIPL}$	0.9999999	<i>k</i> 6, Neumann <i>et al.</i> , 2010
nr10	$DISC:FLIPL + FLIPS \rightarrow DISC:FLIPL:FLIPS$	$n_{k7} \cdot C_{DISC:FLIPL} \cdot C_{FLIPS}$	0.8875063	k7, Neumann et al., 2010
nr14	$2 \ge p43p41 \rightarrow casp8$	$n_{k8}\cdot \mathcal{C}^2_{\mathrm{p43p41}}$	8.044378E - 4	k8, Neumann et al., 2010
nr15_m	$pro3 - casp9 \rightarrow casp3$	$n_{k9} \cdot C_{casp9} \cdot C_{pro3}$	0.04920673	Fitted value, k9 = 0.002249759, Neumann <i>et al.</i> , 2010
nr16	pro8 -casp3→ p43p41	$n_{k10} \cdot C_{pro8} \cdot C_{casp3}$	0.01205258	Fitted value, k10 = 0.1205258, Neumann <i>et al.</i> , 2010
nr19	$p43FLIP \rightarrow p43-FLIP:IKK*$	$n_{k13} \cdot IKK_0 \cdot C_{p43FLIP}$	$n_{k13} = 7.20426E - 4,$ $IKK_0 = 5.772825$	$k13, C_{IKK}(0)$, Neumann <i>et al.</i> , 2010
nr20	NF-кB:ІкB -p43-FLIP:IKK \rightarrow NF-кB:ІкB-P	$n_{k14} \cdot C_{\mathrm{NF}\kappa\mathrm{B}:\mathrm{I}\kappa\mathrm{B}} \cdot C_{p43FLIP:IKK^*}$	0.3588224	k14, Neumann et al., 2010
nr21	$NF-\kappa B:I\kappa B-P \rightarrow NF-\kappa B^*$	$n_{k15} \cdot C_{\mathrm{NF\kappa B: I\kappa BP}}$	3.684162	k15, Neumann et al., 2010
br6*_m	pro9 -tBid \rightarrow casp9	$b_{k6} \cdot C_{tBid} \cdot C_{pro9}$	0.06310456	_
br7*	Bid -casp8→ tBid	$b_{k7} \cdot C_{casp8} \cdot C_{Bid}$	6.0004E - 4	Fitted value, $k_{8Bid}/Km_{8Bid} = 5.3325E - 4$, the reduced Bentele's model
br8*	pro2 -casp3→ (cleavage)	$\frac{b_{k8} \cdot C_{casp3} \cdot C_{pro2}}{b_{Km8} + C_{pro2}}$	$b_{k8} = 15.63123994,$ $b_{Km8} = 55.57400642$	Fitted values, $k_{32} = 0.18137, Km_{32} = 55.574,$ Bentele <i>et al.</i> , 2004
br9*	pro3 -casp8→ casp3	$\frac{b_{k9} \cdot C_{casp8} \cdot C_{pro3}}{b_{Km9} + C_{pro3}}$	$b_{k9} = 0.0$ (HeLa) or 0.27246 (SKW 6.4), $b_{Km9} = 1.03542544$	Fitted values, $k_{83} = 1.90358, Km_{893} = 89.02911547,$ Bentele <i>et al.</i> , 2004
br10*	pro7 -casp8→ (cleavage)	$b_{k10} \cdot C_{casp8} \cdot C_{pro7}$	10.89517864	Fitted value, $k_{78}/Km_{78} = 0.01016$, the reduced Bentele's model
br11*	PARP –casp3 → cPARP	$b_{k11} \cdot C_{casp7} \cdot C_{PARP}$	73.49560485	Fitted value, $0.18 \cdot k_{7act}/Km_{367act} = 0.00824,$ the reduced Bentele's model
br12*	$casp3 + IAP \rightarrow (inhibition)$	$b_{k12} \cdot C_{casp3} \cdot C_{IAP}$	0.01	Fitted value , $k_{39IAP} = 45824.409 \cdot 5 \cdot 10^{-5}$, Bentele <i>et al.</i> , 2004
br13*	-casp3 \rightarrow Apoptotic activity	$b_{k13} \cdot (1.0 - x_{aa}) \cdot C_{casp3}$	5956.81008868	Fitted value, $(k_{36act} + 0.18 \cdot k_{7act})/Km_{367act} = 0.01053,$ Bentele et al., 2004

Table 2S – Table of all reactions (excepting degradation) and rate constants in the composite model

¹ The column contains basic parameters or expressions (and their values if they were refitted) in the combined models.

Table 3S – Table of degraded species and kinetic laws of degradation in the comp	osite model
--	-------------

Degraded species	Degradation rates	Rate constants (min ⁻¹)
pro2, pro3, pro8, DISC:pro8, DISC:pro8:FLIPS, pro9, Bid,	$f_{degr} = degr \cdot x_{aa}^2$	(0.0, HeLa cells, 0.0, HeLa cells)
PARP		$degr = \begin{cases} 0.0542, & SKW 6.4 \text{ cells}, \\ 0.0542, & C_{CD95L} = 5 \mu g/ml, \\ 0.0542, &$
		0.0084 , SKW 6.4 cells, $C_{CD95L} = 200 ng/ml$,
	-	(0.0028, SKW 6.4 cells, $1 ng/ml \le C_{CD95L} \le 100 ng/ml$.
casp3	$f_{degr} = degr \cdot x_{aa}^2 + n_{k12}$	$n_{k12} = 0.1502914, (k12, \text{Neumann } et al., 2010)$
casp8	$f_{degr} = degr \cdot x_{aa}^2 + n_{k11}$	$n_{k11} = 0.02891451, (k11, Neumann et al., 2010)$
casp9	$f_{degr} = degr \cdot x_{aa}^2 + degr_{casp9}$	$degr_{casp9} = 0.10025628$
cPARP	$f_{degr} = degr_{cPARP}$	0.01748, (K_DEGRAD_PARP, Bentele et al., 2004)
tBid	$f_{degr} = degr_{tBid}$	0.04999612
p43-FLIP:IKK*	$f_{degr} = n_{k16}$	0.02229912, (k16, Neumann et al., 2010)
Apoptotic activity (x_{aa})	degr _{apop activity}	0.00219407

Table 4S – Table of nonzero initial concentrations in the composite model

	Initial concentrations (nM)						
Species	Neumann <i>et al.</i> , 2010 HeLa cells	Bentele <i>et al.</i> , 2004 SKW 6.4 cells	Composite model HeLa cells	Composite model SKW 6.4 cells			
CD95L	113.22, 37.74, 18.87	1990.0, 79.6	113.22, 37.74, 18.87	1990.0, 79.6			
CD95R	_	442.820768294033	-	-			
CD95R:FADD	91.26592	0.0	91.26592	611.6891578799691			
procaspase-2	_	157.644193512676	157.644193512676	157.644193512676			
procaspase-3	procaspase-3 1.443404		14.43404	2.3438636537313413			
procaspase-7 –		18.7933134063988	18.7933134063988	18.7933134063988			
procaspase-8	64.47652	442.820768294033	64.47652	350.0248656584318			
procaspase-9	-	245.101295250747	2.9090736162783806	245.101295250747			
FLIPL	L 7.398562		7.398562	7.398562			
FLIPS	5.083923	65.0213661020702	5.083923	70.44906883596883			
IAP	-	12.2160965349275	1.221610	1.221610			
Bid –		231.760433964353	5.003142624870996	231.760433964353			
IKK	5.772825	—	5.772825	5.772825			
NF-ĸB:IĸB	4.739546	-	4.739546	4.739546			
PARP	_	11.1615188752353	11.1615188752353	11.1615188752353			

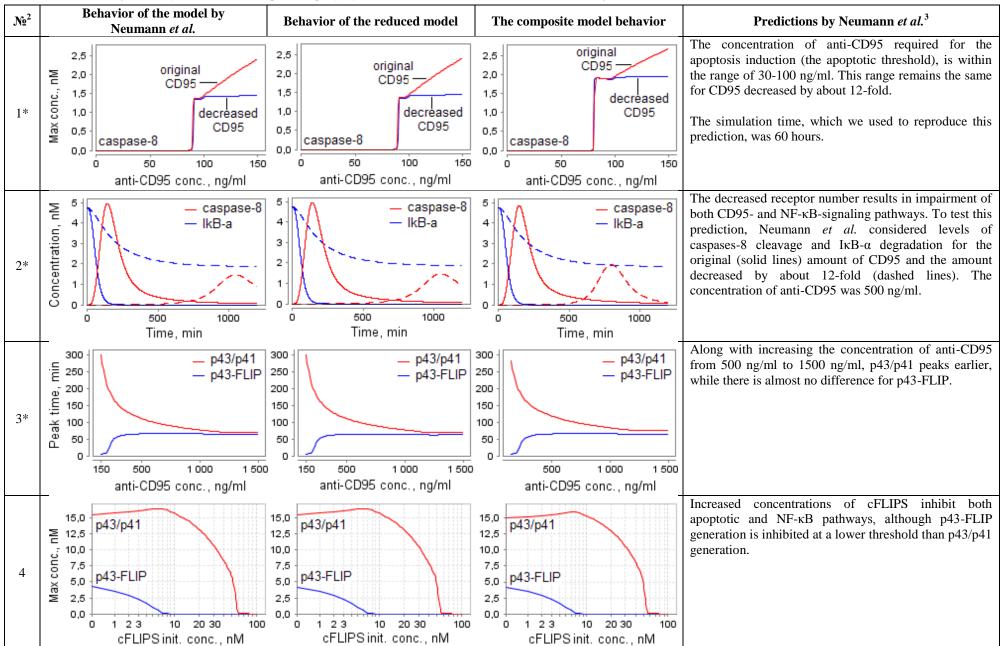

Species	Steady s	tate values, anti-CD95 =	= 200 ng/ml	Steady	Steady state values, anti-CD95 = 5 µg/ml			
Species	Original model	Reduced model	Composite model	Original model	Reduced model	Composite model		
procaspase-2	0.0000374	0.0000316	2.4468579	0.0013440	0.0013602	0.0000096		
procaspase-3	_	-	_	0.0	0.0	0.0		
procaspase-7	_	-	_	0.0	0.0	0.0		
procaspase-8	25.1700455	27.2240392	14.9514288 (total value)	0.0000016	0.0	0.0000367 (total value)		
procaspase-9	0.0	0.0	0.0	-	-	_		
caspase-8	0.0	0.0	0.0	0.0	0.0	0.0		
p43/p41	0.0	0.0	0.0001051	-	-	_		
Bid	_	-	_	0.0411840	0.0342991	0.0000298		
tBid	_	-	_	0.0901602	0.1040935	0.0		
PARP	0.0	0.0	0.0	0.0	0.0	0.0		
cPARP	-	-	-	0.0	0.0	0.0		

Table 6S – Steady state analysis of the Neumann's model and the composite model

Smaning	Steady state values, anti-CD95 = 1500 ng/ml			Steady state values, anti-CD95 = 500 ng/ml			Steady state values, anti-CD95 = 250 ng/ml		
Species	Original model	Reduced model	Composite model	Original model	Reduced model	Composite model	Original model	Reduced model	Composite model
procaspase-8 (total)	12.0752771	12.0751903	12.0181928	2.6562426	2.6562649	2.3208092	9.6046242	9.6052138	13.2926881
p43/p41	0.0010204	0.0010204	0.0000891	0.0009555	0.0009555	0.0000948	0.0008922	0.0008922	0.0000883
caspase-8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
procaspase-3	0.1992635	0.1992525	3.8521010	0.1350020	0.1349977	3.7249153	0.1721551	0.1721569	3.8516549
caspase-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ΙκΒ	0.0	0.0	0.0	0.0000020	0.0000020	0.0000020	0.1519007	0.1526973	0.1526973
ΙκΒ-Ρ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
p43-FLIP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 7S – Calculation of the mean sensitivity for the investigated apoptosis models

Cell lines, The model by Bentele <i>et al.</i>				The model by Neumann et al.			The composite model,	
anti-CD95	Origi	nal model	al model Reduced Original model		nal model	Reduced	all parameters	
concentrations	All parameters	Retained parameters	model	All parameters Retained parameters		model	an parameters	
SKW 6.4, 5 µg/ml	-34.49	-33.79	-29.72	-	—	_	-146.84	
SKW 6.4, 200 ng/ml	-25.64	-24.95	-38.97	_	—	_	-114.13	
HeLa, 1500 ng/ml	—	-	_	-30.71	-30.42	-30.29	-30.21	
HeLa, 500 ng/ml	—	-	—	-79.85	-79.52	-78.94	-79.88	
HeLa, 250 ng/ml	_	_	_	-88.05	-87.60	-88.70	-97.69	

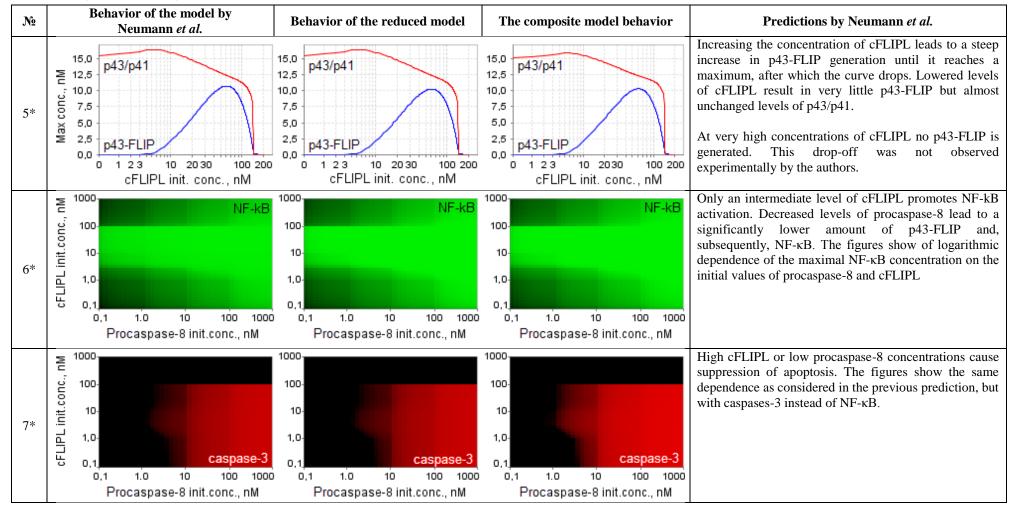
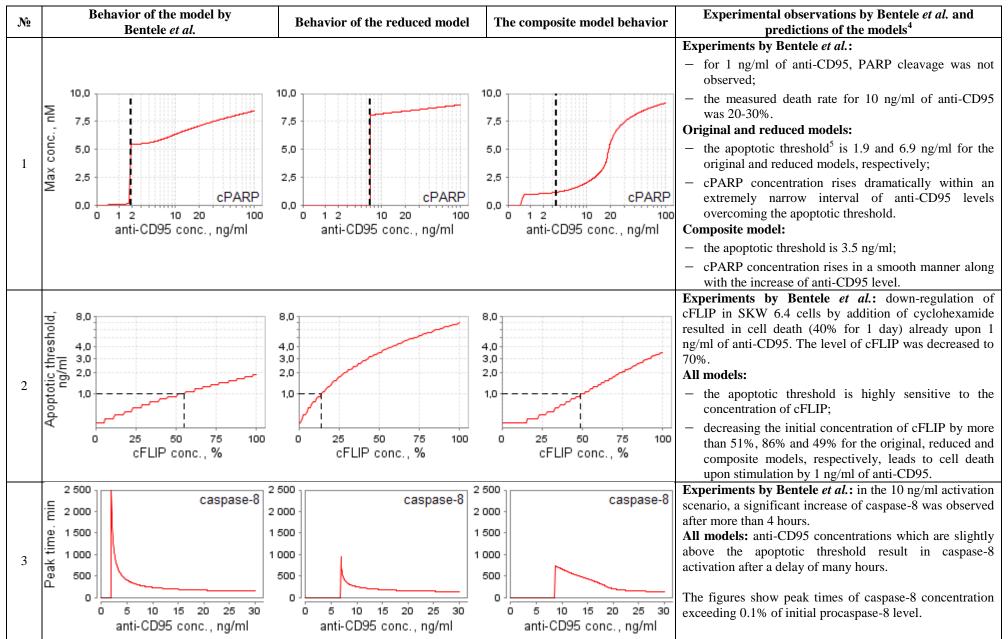


Table 8S – Analysis of predictions regarding apoptosis in HeLa cells as formulated by Neumann et al.


² All the predictions marked with an asterisk were experimentally tested by Neumann *et al.* and confirmed, unless otherwise noted.

³ The The simulation time in predictions 3-7 was 360 min. The concentration of anti-CD95 considered by the authors in predictions 4-7 was 1000 ng/ml.

Table 8S (continuation)

⁴ The simulation time was 2880 min (2 days) in all predictions.

⁵ The apoptotic threshold is the concentration of anti-CD95 after which cPARP amount exceeds 10% of the initial PARP level.

Table 9S (continuation)

№	Behavior of the model by Bentele <i>et al</i> .	Behavior of the reduced model	The composite model behavior	Experimental observations by Bentele <i>et al.</i> and predictions of the models
4	Wu 1000 100- 10- 10- VI 10- VI 10	1000- 100- 10- 1,0- 0,1, 0,1, 0,1, CD95L initial conc., nM	1000- 100- 10- 1,0- 0,1,	 Original and reduced models: low concentrations of IAP (less than 1 nM) result in complete cell death; high concentrations of IAP prevent significant increase of caspase-3 even for high concentrations of the ligand. Composite model: low concentrations of IAP (less than 1 nM) block apoptosis for CD95L less than 0.3 nM; high concentrations of CD95L lead to cell death. The figures show logarithmic dependence of the maximal caspases-3 concentration on initial values of IAP and CD95L.

Table 10S – Parametric constraints of the models by Bentele *et al.* and Neumann *et al.*

№	Parametric constraints of the Bentele's model ⁶	Corresponding reduction steps			
1	$C_{casp7} \approx a \cdot C_{casp3}, \ a = const,$	Simplification of the equation of x_{aa} production			
	$k_{7act} \cdot C_{casp7} \gg k_{36act} \cdot C_{casp3} > k_{36act} \cdot C_{casp6},$				
	$Km_{367act} \gg (1 - x_{aa})$				
2	$v_{br3} \approx v_{br4} \approx v_{br5} \approx v_{br6} \approx v_{br12} \approx v_{br13}$	Elimination of quasi-stationary intermediates CD95R:CD95L, DISC:pro8, DISC:pro8 ₂ and			
		DISC:p43/p41. Removal of slow reactions br12 and br13			
3	$C_{casp6} \approx b \cdot C_{casp3}, b = const$	Deletion of caspase-6 and procaspase-6			
4	$C_{pro8} \gg Km_{68}$ or $v_{br6} \gg v_{br8}$	Formation of the linear kinetic law of caspase-8 activation triggered by caspase-3			
5	$v_{br9} \approx v_{br10}$	Elimination of the quasi-stationary species DISC:cFLIPL			
6	$C_{FLIPL}(0) = C_{FLIPS}(0),$	Lumping of cFLIPL and cFLIPS			
	reactions br9 and br11 have the same rate constant k_{DISC_FLIP} .				
7	$v_{br19}, v_{casp9 \ degr} >> v_{br20}, v_{br35}, v_{br38}$	Deletion of slow reactions of apoptosome complex dissociation (br20), caspase-9 inhibition (br35) and			
		casp9:IAP dissociation (br38)			
8	$v_{br15}/(v_{br16} - vbr17) \approx const$	Elimination of cytochrome C			
9	$v_{br18} \approx v_{br19}$	Elimination of the quasi-stationary apoptosome complex			
10	$v_{br22} > v_{br23}$	Deletion of reaction br23 (Bid truncation) and caspase-2			
11	$Km_{8Bid} \gg C_{Bid}$	Replacement of the Michaelis-Menten kinetics in br22 with the mass action kinetics			
12	$v_{br27} > v_{br28},$	Removal of the reactions of caspase-3 (br28) and caspase-7 (br30) cleavage triggered by caspase-9			
	$v_{br29} \gg v_{br30}$				
13	$v_{br27}, v_{br33}, f_{degr}(x_{aa}) \cdot C_{casp3} \gg v_{br36},$	Deletion of the slow reactions of casp3:IAP (br36) and casp7:IAP (br37) dissociation			
	$v_{br29}, v_{br34}, f_{degr}(x_{aa}) \cdot C_{casp7} \gg v_{br37}$				
14	$v_{br33}, v_{br34} \gg v_{br25}, v_{br26}$	Taking into account the steps described above, we can get only four reactions involving IAP (br33, br34,			
		br25 and br26). At this stage, we can remove reactions br25 and br26, as well as their members Smac and			
		IAP:Smac.			
15	6152 6151	Removal of the reaction of PARP cleavage by caspase-3			
16		Replacement of the Michaelis-Menten kinetics in br29 by the mass action kinetics			
17	$Km_{367act} \gg C_{PARP},$	Modification of kinetics of br32			
	$C_{casp7} \approx a \cdot C_{casp3}, a = const$				
N⁰	Parametric constraints of the Neumann's model	Corresponding reduction steps			
1	$k2 \cdot C_{pro8}, k3 \cdot C_{FLIPL} \gg k4 \cdot C_{FLIPS}$	The slow reaction of the DISC binding by FLIPS (nr4) leads to production of a very small amount of			
		DISC:FLIPS. Therefore, all reactions involving this complex (nr4, nr11-nr13) can be removed without			
		any significant effect on the model dynamics.			
2	$C_{IKK} \gg C_{p43FLIP}$	Setting the constant value of the IKK concentration			

⁶We did not analyze the constraints on degradation rates of species.