T. Frayling, N. Timpson, M. Weedon, E. Zeggini, R. Freathy et al., A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity, Science, vol.316, issue.5826, pp.889-894, 2007.
DOI : 10.1126/science.1141634

C. Dina, D. Meyre, S. Gallina, E. Durand, A. Kö-rner et al., Variation in FTO contributes to childhood obesity and severe adult obesity, Nature Genetics, vol.165, issue.6, pp.724-726, 2007.
DOI : 10.1073/pnas.0400782101

URL : https://hal.archives-ouvertes.fr/hal-00173651

A. Scuteri, S. Sanna, W. Chen, M. Uda, G. Albai et al., Genome-Wide Association Scan Shows Genetic Variants in the FTO Gene Are Associated with Obesity-Related Traits, PLoS Genetics, vol.16, issue.7, p.115, 2007.
DOI : 10.1371/journal.pgen.0030115.st005

K. Wåhlé-n, E. Sjö-lin, and J. Hoffstedt, The common rs9939609 gene variant of the fat mass- and obesity-associated gene FTO is related to fat cell lipolysis, The Journal of Lipid Research, vol.49, issue.3, pp.607-611, 2008.
DOI : 10.1194/jlr.M700448-JLR200

N. Klö-ting, D. Schleinitz, K. Ruschke, J. Berndt, M. Fasshauer et al., Inverse relationship between obesity and FTO gene expression in visceral adipose tissue in humans, Diabetologia, vol.39, issue.4, pp.641-647, 2008.
DOI : 10.1007/s00125-008-0928-9

G. Stratigopoulos, S. Padilla, C. Leduc, E. Watson, A. Hattersley et al., Regulation of Fto/Ftm gene expression in mice and humans, AJP: Regulatory, Integrative and Comparative Physiology, vol.294, issue.4, pp.1185-1196, 2008.
DOI : 10.1152/ajpregu.00839.2007

J. Fischer, L. Koch, C. Emmerling, J. Vierkotten, T. Peters et al., Inactivation of the Fto gene protects from obesity, Nature, vol.134, issue.7240, pp.894-898, 2009.
DOI : 10.1038/nature07848

C. Church, S. Lee, E. Bagg, J. Mctaggart, R. Deacon et al., A Mouse Model for the Metabolic Effects of the Human Fat Mass and Obesity Associated FTO Gene, PLoS Genetics, vol.13, issue.4, p.1000599, 2009.
DOI : 10.1371/journal.pgen.1000599.s016

C. Herder, W. Rathmann, K. Strassburger, H. Finner, H. Grallert et al., Genes Confer Risk of Type 2 Diabetes Independently of BMI in the German KORA Studies, Hormone and Metabolic Research, vol.40, issue.10, pp.722-726, 2008.
DOI : 10.1055/s-2008-1078730

C. Yajnik, C. Janipalli, S. Bhaskar, S. Kulkarni, R. Freathy et al., FTO gene variants are strongly associated with type 2 diabetes in South Asian Indians, Diabetologia, vol.51, issue.2, pp.247-252, 2009.
DOI : 10.1007/s00125-008-1186-6

M. Ng, K. Park, B. Oh, C. Tam, Y. Cho et al., Implication of Genetic Variants Near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in Type 2 Diabetes and Obesity in 6,719 Asians, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians, pp.2226-2233, 2008.
DOI : 10.2337/db07-1583

V. Legry, D. Cottel, J. Ferriè-res, D. Arveiler, N. Andrieux et al., Effect of an FTO polymorphism on fat mass, obesity, and type 2 diabetes mellitus in the French MONICA Study, Metabolism, vol.58, issue.7, pp.971-975, 2009.
DOI : 10.1016/j.metabol.2009.02.019

D. Sanghera, L. Ortega, S. Han, J. Singh, S. Ralhan et al., Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTOvariants confer a significant risk, BMC Medical Genetics, vol.40, issue.2, p.59, 2008.
DOI : 10.1038/ng.75

R. Freathy, N. Timpson, D. Lawlor, A. Pouta, Y. Ben-shlomo et al., Common Variation in the FTO Gene Alters Diabetes-Related Metabolic Traits to the Extent Expected Given Its Effect on BMI, Diabetes, vol.57, issue.5, pp.1419-1426, 2008.
DOI : 10.2337/db07-1466

R. Fredriksson, M. Hä-gglund, P. Olszewski, O. Stephansson, J. Jacobsson et al., The Obesity Gene, FTO, Is of Ancient Origin, Up-Regulated during Food Deprivation and Expressed in Neurons of Feeding-Related Nuclei of the Brain, Endocrinology, vol.149, issue.5, pp.2062-2071, 2008.
DOI : 10.1210/en.2007-1457

T. Gerken, C. Girard, Y. Tung, C. Webby, V. Saudek et al., The Obesity-Associated FTO Gene Encodes a 2-Oxoglutarate-Dependent Nucleic Acid Demethylase, Science, vol.318, issue.5855, pp.1469-1472, 2007.
DOI : 10.1126/science.1151710

L. Grunnet, E. Nilsson, C. Ling, T. Hansen, O. Pedersen et al., Regulation and Function of FTO mRNA Expression in Human Skeletal Muscle and Subcutaneous Adipose Tissue, Diabetes, vol.58, issue.10, pp.2402-2408, 2009.
DOI : 10.2337/db09-0205

P. Ducluzeau, N. Perretti, M. Laville, F. Andreelli, N. Vega et al., Regulation by Insulin of Gene Expression in Human Skeletal Muscle and Adipose Tissue: Evidence for Specific Defects in Type 2 Diabetes, Diabetes, vol.50, issue.5, pp.1134-1142, 2001.
DOI : 10.2337/diabetes.50.5.1134

M. Laville, D. Auboeuf, Y. Khalfallah, N. Vega, J. Riou et al., Acute regulation by insulin of phosphatidylinositol-3-kinase, Rad, Glut 4, and lipoprotein lipase mRNA levels in human muscle., Journal of Clinical Investigation, vol.98, issue.1, pp.43-49, 1996.
DOI : 10.1172/JCI118775

E. Meugnier, S. Rome, and H. Vidal, Regulation of gene expression by glucose, Current Opinion in Clinical Nutrition and Metabolic Care, vol.10, issue.4, pp.518-522, 2007.
DOI : 10.1097/MCO.0b013e3281298fef

D. Cozzone, S. Frö-jdö, E. Disse, C. Debard, M. Laville et al., Isoform-specific defects of insulin stimulation of Akt/protein kinase B (PKB) in skeletal muscle cells from type 2 diabetic patients, Diabetologia, vol.10, issue.Suppl 2, pp.512-521, 2008.
DOI : 10.1007/s00125-007-0913-8

D. Cozzone, C. Debard, N. Dif, R. N. Disse, E. Vouillarmet et al., Activation of liver X receptors promotes lipid accumulation but does not alter insulin action in human skeletal muscle cells, Diabetologia, vol.47, issue.5, pp.990-999, 2006.
DOI : 10.1007/s00125-006-0140-8

C. Bonnard, A. Durand, S. Peyrol, E. Chanseaume, M. Chauvin et al., Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice, Journal of Clinical Investigation, vol.118, pp.789-800, 2008.
DOI : 10.1172/JCI32601

URL : https://hal.archives-ouvertes.fr/inserm-00808486

C. Chaussade, L. Pirola, S. Bonnafous, F. Blondeau, S. Brenz-verca et al., in Insulin-Stimulated Glucose Transport, Molecular Endocrinology, vol.17, issue.12, pp.2448-2460, 2003.
DOI : 10.1210/me.2003-0261

N. Dif, V. Euthine, E. Gonnet, M. Laville, H. Vidal et al., Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs, Biochemical Journal, vol.400, issue.1, pp.179-188, 2006.
DOI : 10.1042/BJ20060499

URL : https://hal.archives-ouvertes.fr/hal-00478570

K. Bouzakri, M. Roques, P. Gual, S. Espinosa, F. Guebre-egziabher et al., Reduced Activation of Phosphatidylinositol-3 Kinase and Increased Serine 636 Phosphorylation of Insulin Receptor Substrate-1 in Primary Culture of Skeletal Muscle Cells From Patients With Type 2 Diabetes, Diabetes, vol.52, issue.6, pp.1319-1325, 2003.
DOI : 10.2337/diabetes.52.6.1319

J. Folch, M. Lees, S. Stanley, and G. , A simple method for the isolation and purification of total lipides from animal tissues, J Biol Chem, vol.226, pp.497-509, 1957.

J. Silver, M. Ritchie, and G. Smyth, Microarray background correction: maximum likelihood estimation for the normal-exponential convolution, Biostatistics, vol.10, issue.2, pp.352-363, 2009.
DOI : 10.1093/biostatistics/kxn042

R. Gentleman, V. Carey, D. Bates, B. Bolstad, M. Dettling et al., Bioconductor: open software development for computational biology and bioinformatics, Genome Biology, vol.5, issue.10, p.80, 2004.
DOI : 10.1186/gb-2004-5-10-r80

G. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, p.3, 2004.
DOI : 10.2202/1544-6115.1027

C. Vives-bauza, L. Yang, and G. Manfredi, Assay of Mitochondrial ATP Synthesis in Animal Cells and Tissues, Methods Cell Biol, vol.80, pp.155-171, 2007.
DOI : 10.1016/S0091-679X(06)80007-5

B. Hegarty, S. Furler, J. Ye, G. Cooney, and E. Kraegen, The role of intramuscular lipid in insulin resistance, Acta Physiologica Scandinavica, vol.50, issue.2, pp.373-383, 2003.
DOI : 10.1074/jbc.M200958200

P. Rö-sen, P. Nawroth, G. King, W. Mö-ller, H. Tritschler et al., The role of oxidative stress in the onset and progression of diabetes and its complications: asummary of a Congress Series sponsored byUNESCO-MCBN, the American Diabetes Association and the German Diabetes Society, Diabetes/Metabolism Research and Reviews, vol.26, issue.3, pp.189-212, 2001.
DOI : 10.1002/dmrr.196

L. Grunnet, C. Brøns, S. Jacobsen, E. Nilsson, A. Astrup et al., rs9939609, The Journal of Clinical Endocrinology & Metabolism, vol.94, issue.2, pp.596-602, 2009.
DOI : 10.1210/jc.2008-1592

S. Boissel, O. Reish, K. Proulx, H. Kawagoe-takaki, B. Sedgwick et al., Loss-of-Function Mutation in the Dioxygenase-Encoding FTO Gene Causes Severe Growth Retardation and Multiple Malformations, The American Journal of Human Genetics, vol.85, issue.1, pp.106-111, 2009.
DOI : 10.1016/j.ajhg.2009.06.002

D. Meyre, K. Proulx, H. Kawagoe-takaki, V. Vatin, R. Gutié-rrez-aguilar et al., Prevalence of Loss-of-Function FTO Mutations in Lean and Obese Individuals, Diabetes, vol.59, issue.1, pp.311-318, 2010.
DOI : 10.2337/db09-0703

P. Schrauwen and M. Hesselink, Oxidative Capacity, Lipotoxicity, and Mitochondrial Damage in Type 2 Diabetes, Diabetes, vol.53, issue.6, pp.1412-1417, 2004.
DOI : 10.2337/diabetes.53.6.1412

P. Puigserver, Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha, Int J Obes (Lond), vol.1, pp.5-9, 2005.

R. Barrè-s, M. Osler, J. Yan, A. Rune, T. Fritz et al., Non-CpG Methylation of the PGC-1?? Promoter through DNMT3B Controls Mitochondrial Density, Cell Metabolism, vol.10, issue.3, pp.189-198, 2009.
DOI : 10.1016/j.cmet.2009.07.011

C. Debard, M. Laville, V. Berbe, E. Loizon, C. Guillet et al., Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of Type 2 diabetic patients, Diabetologia, vol.47, issue.5, pp.917-925, 2004.
DOI : 10.1007/s00125-004-1394-7

V. Mootha, C. Lindgren, K. Eriksson, A. Subramanian, S. Sihag et al., PGC-1??-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nature Genetics, vol.34, issue.3, pp.267-273, 2003.
DOI : 10.1038/ng1180

M. Patti, A. Butte, S. Crunkhorn, K. Cusi, R. Berria et al., Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1, Proceedings of the National Academy of Sciences, vol.100, issue.14, pp.8466-8471, 2003.
DOI : 10.1073/pnas.1032913100