S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, Global Prevalence of Diabetes: Estimates for the year 2000 and projections for 2030, Diabetes Care, vol.27, issue.5, pp.1047-1053, 2004.
DOI : 10.2337/diacare.27.5.1047

C. Mathers and D. Loncar, Projections of Global Mortality and Burden of Disease from 2002 to 2030, PLoS Medicine, vol.52, issue.11, p.442, 2002.
DOI : 10.1371/journal.pmed.0030442.st007

M. Funaki, Saturated fatty acids and insulin resistance, The Journal of Medical Investigation, vol.56, issue.3,4, pp.3-488, 2009.
DOI : 10.2152/jmi.56.88

B. Goldstein, Insulin resistance as the core defect in type 2 diabetes mellitus, The American Journal of Cardiology, vol.90, issue.5, pp.3-10, 2002.
DOI : 10.1016/S0002-9149(02)02553-5

J. Sowers, M. Epstein, and E. Frohlich, Diabetes, Hypertension, and Cardiovascular Disease : An Update, Hypertension, vol.37, issue.4, pp.1053-1059, 2001.
DOI : 10.1161/01.HYP.37.4.1053

I. Chinen, M. Shimabukuro, K. Yamakawa, N. Higa, T. Matsuzaki et al., Vascular Lipotoxicity: Endothelial Dysfunction via Fatty-Acid-Induced Reactive Oxygen Species Overproduction in Obese Zucker Diabetic Fatty Rats, Endocrinology, vol.148, issue.1, pp.160-165, 2007.
DOI : 10.1210/en.2006-1132

T. Heitzer, T. Schlinzig, K. Krohn, T. Meinertz, and T. Munzel, Endothelial Dysfunction, Oxidative Stress, and Risk of Cardiovascular Events in Patients With Coronary Artery Disease, Circulation, vol.104, issue.22, pp.2673-2678, 2001.
DOI : 10.1161/hc4601.099485

C. Thuillez and V. Richard, Targeting endothelial dysfunction in hypertensive subjects, Journal of Human Hypertension, vol.374, issue.1, pp.21-25, 2005.
DOI : 10.1067/mcp.2001.114670

A. Nitenberg, P. Valensi, R. Sachs, M. Dali, E. Aptecar et al., Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function, Diabetes, issue.7, pp.421017-1025, 1993.

J. Clark, C. Palmer, and W. Shaw, The Diabetic Zucker Fatty Rat, Experimental Biology and Medicine, vol.173, issue.1, pp.68-75, 1983.
DOI : 10.3181/00379727-173-41611

P. Wang and J. Chatham, Onset of diabetes in Zucker diabetic fatty (ZDF) rats leads to improved recovery of function after ischemia in the isolated perfused heart, AJP: Endocrinology and Metabolism, vol.286, issue.5, pp.725-736, 2004.
DOI : 10.1152/ajpendo.00295.2003

A. Greenberg and M. Mcdaniel, Identifying the links between obesity, insulin resistance and beta-cell function: potential role of adipocyte-derived cytokines in the pathogenesis of type 2 diabetes, European Journal of Clinical Investigation, vol.25, issue.s3, pp.24-34, 2002.
DOI : 10.1056/NEJM199602013340503

B. Erdos, J. Snipes, A. Miller, and D. Busija, Cerebrovascular Dysfunction in Zucker Obese Rats Is Mediated by Oxidative Stress and Protein Kinase C, Diabetes, vol.53, issue.5, pp.1352-1359, 2004.
DOI : 10.2337/diabetes.53.5.1352

C. Oltman, L. Coppey, J. Gellett, E. Davidson, D. Lund et al., Progression of vascular and neural dysfunction in sciatic nerves of Zucker diabetic fatty and Zucker rats, AJP: Endocrinology and Metabolism, vol.289, issue.1, pp.113-122, 2005.
DOI : 10.1152/ajpendo.00594.2004

L. Coppey, J. Gellett, E. Davidson, J. Dunlap, and M. Yorek, Changes in endoneurial blood flow, motor nerve conduction velocity and vascular relaxation of epineurial arterioles of the sciatic nerve in ZDF-obese diabetic rats, Diabetes/Metabolism Research and Reviews, vol.87, issue.1, pp.49-56, 2002.
DOI : 10.1002/dmrr.257

H. Cai and D. Harrison, Endothelial Dysfunction in Cardiovascular Diseases: The Role of Oxidant Stress, Circulation Research, vol.87, issue.10, pp.840-844, 2000.
DOI : 10.1161/01.RES.87.10.840

G. Pieper, P. Langenstroer, and W. Siebeneich, Diabetic-induced endothelial dysfunction in rat aorta: role of hydroxyl radicals, Cardiovascular Research, vol.34, issue.1, pp.145-156, 1997.
DOI : 10.1016/S0008-6363(96)00237-4

N. Winer and J. Sowers, Diabetes and Arterial Stiffening, Adv Cardiol, vol.44, pp.245-251, 2007.
DOI : 10.1159/000096745

Y. Hattori, H. Kawasaki, K. Abe, and M. Kanno, Superoxide dismutase recovers altered endothelium-dependent relaxation in diabetic rat aorta

W. Chilian, Coronary Microcirculation in Health and Disease: Summary of an NHLBI Workshop, Circulation, vol.95, issue.2, pp.522-528, 1997.
DOI : 10.1161/01.CIR.95.2.522

C. Oltman, L. Richou, E. Davidson, L. Coppey, D. Lund et al., Progression of coronary and mesenteric vascular dysfunction in Zucker obese and Zucker diabetic fatty rats, AJP: Heart and Circulatory Physiology, vol.291, issue.4, pp.1780-1787, 2006.
DOI : 10.1152/ajpheart.01297.2005

C. Kilkenny, W. Browne, I. Cuthill, M. Emerson, and D. Altman, Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research, PLoS Biology, vol.32, issue.4, p.1000412, 2010.
DOI : 10.1371/journal.pbio.1000412.t002

W. Fu, T. Haynes, R. Kohli, J. Hu, W. Shi et al., Dietary L-arginine supplementation reduces fat mass in zucker diabetic fatty rats, J Nutr, vol.135, issue.4, pp.714-721, 2005.

M. Skrzypiec-spring, B. Grotthus, A. Szelag, and R. Schulz, Isolated heart perfusion according to Langendorff???Still viable in the new millennium, Journal of Pharmacological and Toxicological Methods, vol.55, issue.2, pp.113-126, 2007.
DOI : 10.1016/j.vascn.2006.05.006

F. Gobel, L. Norstrom, R. Nelson, C. Jorgensen, and Y. Wang, The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris, Circulation, vol.57, issue.3, pp.549-556, 1978.
DOI : 10.1161/01.CIR.57.3.549

P. Faure, J. Lafond, J. Cadet, M. Kalnyanaraman, M. Fontecave et al., Measurement of plasma sulfhydryl and carbonyl groups as a possible indicator of protein oxidation In Analysis of free radicals in biological systems, pp.237-248, 1995.

W. Gunzler, H. Kremers, and L. Flohe, An improved coupled test procedure for glutathione peroxidase (EC 1-11-1-9-) in blood, Z Klin Chem Klin Biochem, vol.12, issue.10, pp.444-448, 1974.

H. Bergmeyer, K. Gawehn, D. Williamson, and P. Lund, Methods of enzymatic analysis. 2 Englishth edition, 1974.

E. Nuutinen, Subcellular origin of the surface fluorescence of reduced nicotinamide nucleotides in the isolated perfused rat heart, Basic Research in Cardiology, vol.103, issue.1, pp.49-58, 1984.
DOI : 10.1007/BF01935806

G. Goodwin, C. Taylor, and H. Taegtmeyer, Regulation of Energy Metabolism of the Heart during Acute Increase in Heart Work, Journal of Biological Chemistry, vol.273, issue.45, pp.27329530-29539, 1998.
DOI : 10.1074/jbc.273.45.29530

J. Baumberger, J. Jurgensen, and K. Bardwell, THE COUPLED REDOX POTENTIAL OF THE LACTATE-ENZYME-PYRUVATE SYSTEM, The Journal of General Physiology, vol.16, issue.6, pp.961-976, 1933.
DOI : 10.1085/jgp.16.6.961

M. Richard, B. Portal, J. Meo, C. Coudray, A. Hadjian et al., Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid, Clin Chem, vol.38, issue.5, pp.704-709, 1992.

P. Gardner, D. Nguyen, and C. White, Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs., Proceedings of the National Academy of Sciences, vol.91, issue.25, pp.9112248-12252, 1994.
DOI : 10.1073/pnas.91.25.12248

E. Mourmoura, M. Leguen, H. Dubouchaud, K. Couturier, D. Vitiello et al., Middle age aggravates myocardial ischemia through surprising upholding of complex II activity, oxidative stress, and reduced coronary perfusion, AGE, vol.1757, issue.3, pp.321-336, 2011.
DOI : 10.1007/s11357-010-9186-0

URL : https://hal.archives-ouvertes.fr/inserm-00628741

G. Faloona and P. Srere, Escherichia coli citrate synthase. Purification and the effect of potassium on some properties, Biochemistry, vol.8, issue.11, pp.4497-4503, 1969.
DOI : 10.1021/bi00839a041

K. Livak and T. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(?delta delta C(T)) method, pp.402-408, 2001.

L. Demaison, D. Moreau, C. Vergely-vandriesse, S. Gregoire, M. Degois et al., Effects of dietary polyunsaturated fatty acids and hepatic steatosis on the functioning of isolated working rat heart under normoxic conditions and during post-ischemic reperfusion, Molecular and Cellular Biochemistry, vol.224, issue.1/2, pp.103-116, 2001.
DOI : 10.1023/A:1011934603667

J. Folch, M. Lees, S. Stanley, and G. , A simple method for the isolation and purification of total lipides from animal tissues, J Biol Chem, vol.226, issue.1, pp.497-509, 1957.

P. Juaneda and G. Rocquelin, Rapid and convenient separation of phospholipids and non phosphorus lipids from rat heart using silica cartridges, Lipids, vol.234, issue.1, pp.40-41, 1985.
DOI : 10.1007/BF02534360

E. Sudar, B. Dobutovic, S. Soskic, V. Mandusic, Z. Zakula et al., Regulation of inducible nitric oxide synthase activity/expression in rat hearts from ghrelin-treated rats, Journal of Physiology and Biochemistry, vol.149, issue.3, pp.195-204, 2011.
DOI : 10.1007/s13105-010-0063-1

M. Wang, D. Murrell, C. Szabo, R. Warren, M. Sarris et al., Nitric Oxide in Skeletal Muscle: Inhibition of Nitric Oxide Synthase Inhibits Walking Speed in Rats, Nitric Oxide, vol.5, issue.3, pp.219-232, 2001.
DOI : 10.1006/niox.2001.0348

E. Okon, T. Szado, I. Laher, B. Mcmanus, and C. Van-breemen, Augmented Contractile Response of Vascular Smooth Muscle in a Diabetic Mouse Model, Journal of Vascular Research, vol.40, issue.6, pp.520-530, 2003.
DOI : 10.1159/000075238

G. Parise, A. Brose, and M. Tarnopolsky, Resistance exercise training decreases oxidative damage to DNA and increases cytochrome oxidase activity in older adults, Experimental Gerontology, vol.40, issue.3, pp.173-180, 2005.
DOI : 10.1016/j.exger.2004.09.002

B. Goldstein, K. Mahadev, X. Wu, L. Zhu, and H. Motoshima, Role of insulininduced reactive oxygen species in the insulin signaling pathway

H. Rupp, D. Wagner, T. Rupp, L. Schulte, and B. Maisch, Risk stratification by the "EPA + DHA level" and the "EPA/AA ratio" focus on anti-inflammatory and antiarrhythmogenic effects of long-chain omega-3 fatty acids, Herz, issue.7, pp.29673-685, 2004.

S. Pepe and P. Mclennan, Cardiac Membrane Fatty Acid Composition Modulates Myocardial Oxygen Consumption and Postischemic Recovery of Contractile Function, Circulation, vol.105, issue.19, pp.2303-2308, 2002.
DOI : 10.1161/01.CIR.0000015604.88808.74

M. Essop, A. Chan, W. Valle, A. Garcia-palmer, and F. , Impaired contractile function and mitochondrial respiratory capacity in response to oxygen deprivation in a rat model of pre-diabetes, Acta Physiologica, vol.292, issue.4, pp.289-296, 2009.
DOI : 10.1111/j.1748-1716.2009.02024.x

P. Wang, S. Lloyd, H. Zeng, A. Bonen, and J. Chatham, Impact of altered substrate utilization on cardiac function in isolated hearts from Zucker diabetic fatty rats, AJP: Heart and Circulatory Physiology, vol.288, issue.5, pp.2102-2110, 2005.
DOI : 10.1152/ajpheart.00935.2004

B. Finck, X. Han, M. Courtois, F. Aimond, J. Nerbonne et al., A critical role for PPAR??-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: Modulation by dietary fat content, Proceedings of the National Academy of Sciences, vol.100, issue.3, pp.1226-1231, 2003.
DOI : 10.1073/pnas.0336724100

A. Daniels, M. Van-bilsen, B. Janssen, A. Brouns, J. Cleutjens et al., Impaired cardiac functional reserve in type 2 diabetic db/db mice is associated with metabolic, but not structural, remodelling, Acta Physiologica, vol.1, issue.1, pp.11-22, 2010.
DOI : 10.1111/j.1748-1716.2010.02102.x

L. Semeniuk, A. Kryski, and D. Severson, Echocardiographic assessment of cardiac function in diabetic db

A. Barth and G. Tomaselli, Cardiac metabolism and arrhythmias. Circulation Arrhythmia and electrophysiology, pp.327-335, 2009.

S. Fredersdorf, C. Thumann, W. Zimmermann, R. Vetter, T. Graf et al., Increased myocardial SERCA expression in early type 2 diabetes mellitus is insulin dependent: In vivo and in vitro data, Cardiovascular Diabetology, vol.11, issue.1, p.57, 2012.
DOI : 10.1161/01.RES.0000051885.70159.12

H. Nakamura, S. Matoba, E. Iwai-kanai, M. Kimata, A. Hoshino et al., p53 Promotes Cardiac Dysfunction in Diabetic Mellitus Caused by Excessive Mitochondrial Respiration-Mediated Reactive Oxygen Species Generation and Lipid Accumulation, Circulation: Heart Failure, vol.5, issue.1, pp.53106-115
DOI : 10.1161/CIRCHEARTFAILURE.111.961565

S. Sharma, J. Adrogue, L. Golfman, I. Uray, J. Lemm et al., Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart, The FASEB Journal, vol.18, issue.14, pp.181692-1700, 2004.
DOI : 10.1096/fj.04-2263com

R. Wissler, The production of atheromatous lesions in the albino rat, Proc Inst Med Chic, vol.19, issue.4, pp.79-80, 1952.

T. Mccabe, D. Fulton, L. Roman, and W. Sessa, Enhanced Electron Flux and Reduced Calmodulin Dissociation May Explain "Calcium-independent" eNOS Activation by Phosphorylation, Journal of Biological Chemistry, vol.275, issue.9, pp.6123-6128, 2000.
DOI : 10.1074/jbc.275.9.6123

P. Nagareddy, Z. Xia, J. Mcneill, and K. Macleod, Increased expression of iNOS is associated with endothelial dysfunction and impaired pressor responsiveness in streptozotocin-induced diabetes, AJP: Heart and Circulatory Physiology, vol.289, issue.5, pp.2144-2152, 2005.
DOI : 10.1152/ajpheart.00591.2005

C. Chen, L. Druhan, S. Varadharaj, Y. Chen, and J. Zweier, Phosphorylation of Endothelial Nitric-oxide Synthase Regulates Superoxide Generation from the Enzyme, Journal of Biological Chemistry, vol.283, issue.40, pp.27038-27047, 2008.
DOI : 10.1074/jbc.M802269200

H. Shimokawa and T. Matoba, Hydrogen peroxide as an endothelium-derived hyperpolarizing factor, Pharmacological Research, vol.49, issue.6, pp.543-549, 2004.
DOI : 10.1016/j.phrs.2003.10.016

X. Gao, A. Picchi, and C. Zhang, Upregulation of TNF-alpha and Receptors Contribute to Endothelial Dysfunction in Zucker Diabetic Rats, American Journal of Biomedical Sciences
DOI : 10.5099/aj100100001

C. Oltman, T. Kleinschmidt, E. Davidson, L. Coppey, D. Lund et al., Treatment of cardiovascular dysfunction associated with the metabolic syndrome and type 2 diabetes, Vascular Pharmacology, vol.48, issue.1, pp.47-53, 2008.
DOI : 10.1016/j.vph.2007.11.005

H. Oniki, K. Fujii, Y. Kansui, K. Goto, and M. Iida, Effects of angiotensin II receptor antagonist on impaired endothelium-dependent and endothelium-independent relaxations in type II diabetic rats, Journal of Hypertension, vol.24, issue.2, pp.331-338, 2006.
DOI : 10.1097/01.hjh.0000200518.34980.cc

A. Spector, J. Hoak, G. Fry, G. Denning, L. Stoll et al., Effect of fatty acid modification on prostacyclin production by cultured human endothelial cells., Journal of Clinical Investigation, vol.65, issue.5, pp.1003-1012, 1980.
DOI : 10.1172/JCI109752

T. Mori, G. Watts, V. Burke, E. Hilme, I. Puddey et al., Differential Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Vascular Reactivity of the Forearm Microcirculation in Hyperlipidemic, Overweight Men, Circulation, vol.102, issue.11, pp.1264-1269, 2000.
DOI : 10.1161/01.CIR.102.11.1264

R. Brandes, D. Kim, F. Schmitz-winnenthal, M. Amidi, A. Godecke et al., Increased Nitrovasodilator Sensitivity in Endothelial Nitric Oxide Synthase Knockout Mice : Role of Soluble Guanylyl Cyclase, Hypertension, vol.35, issue.1, pp.231-236, 2000.
DOI : 10.1161/01.HYP.35.1.231

E. Jebelovszki, C. Kiraly, N. Erdei, A. Feher, E. Pasztor et al., High-fat diet-induced obesity leads to increased NO sensitivity of rat coronary arterioles: role of soluble guanylate cyclase activation, AJP: Heart and Circulatory Physiology, vol.294, issue.6, pp.294-2558, 2008.
DOI : 10.1152/ajpheart.01198.2007

T. Radovits, S. Korkmaz, S. Loganathan, E. Barnucz, T. Bomicke et al., Comparative investigation of the left ventricular pressure-volume relationship in rat models of type 1 and type 2 diabetes mellitus, AJP: Heart and Circulatory Physiology, vol.297, issue.1, pp.125-133, 2009.
DOI : 10.1152/ajpheart.00165.2009

D. Crandall, B. Goldstein, F. Lizzo, R. Gabel, and P. Cervoni, Hemodynamics of obesity: influence of pattern of adipose tissue cellularity, Am J Physiol, vol.251, issue.2 2, pp.314-319, 1986.