R. Looney, E. E. Thornton, D. Sen, W. J. Lamm, R. W. Glenny et al., Stabilized imaging of immune surveillance in the mouse lung, Nature Methods, vol.89, issue.1, pp.91-96, 2011.
DOI : 10.1186/1472-6750-2-11

W. Hou, W. C. Lee, M. C. Leong, S. Sonam, S. R. Vedula et al., Microfluidics for Applications in Cell Mechanics and Mechanobiology, Cellular and Molecular Bioengineering, vol.9, issue.10, pp.591-602, 2011.
DOI : 10.1007/s12195-011-0209-4

H. Nishino, H. Tanaka, Y. Ogura, T. Inoue, K. Koh et al., Serial Changes in Leukocyte Deformability and Whole Blood Rheology in Patients With Sepsis or Trauma, The Journal of Trauma: Injury, Infection, and Critical Care, vol.59, issue.6, pp.1425-1431, 2005.
DOI : 10.1097/01.ta.0000197356.83144.72

A. M. Gabriele, P. Benoliel, O. Bongrand, and . Theodoly, Microfluidic Investigation Reveals Distinct Roles for Actin Cytoskeleton and Myosin II Activity in Capillary Leukocyte Trafficking, Biophysical Journal, vol.96, issue.10, pp.4308-4318, 2009.
DOI : 10.1016/j.bpj.2009.02.037

URL : https://hal.archives-ouvertes.fr/hal-01085256

T. Preira, M. Leoni, A. Valignat, P. Lellouch, J. Robert et al., Microfluidic tools to investigate pathologies in the blood microcirculation, International Journal of Nanotechnology, vol.9, issue.3/4/5/6/7, pp.529-547, 2012.
DOI : 10.1504/IJNT.2012.045340

J. Rosenbluth, W. A. Lam, and D. A. Fletcher, Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry, Lab on a Chip, vol.2, issue.7, pp.1062-1070, 2008.
DOI : 10.1039/b802931h

R. D. Yap and . Kamm, Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties, Journal of Applied Physiology, vol.98, issue.5, pp.1930-1939, 2005.
DOI : 10.1152/japplphysiol.01226.2004

J. Hawkins, M. Piel, G. Faure-andre, A. M. Lennon-dumenil, J. F. Joanny et al., Pushing off the Walls: A Mechanism of Cell Motility in Confinement, Physical Review Letters, vol.102, issue.5, p.58103, 2009.
DOI : 10.1103/PhysRevLett.102.058103

W. K. Young and C. A. Simmons, Macro- and microscale fluid flow systems for endothelial cell biology, Lab Chip, vol.123, issue.2, pp.143-160, 2010.
DOI : 10.1039/B913390A

W. Song, W. Gu, N. Futai, K. A. Warner, J. E. Nor et al., Computer-Controlled Microcirculatory Support System for Endothelial Cell Culture and Shearing, Analytical Chemistry, vol.77, issue.13, pp.3993-3399, 2005.
DOI : 10.1021/ac050131o

E. Tkachenko, M. H. Gutierrez, A. Ginsberg, and . Groisman, An easy to assemble microfluidic perfusion device with a magnetic clamp, Lab on a Chip, vol.38, issue.8, pp.1085-1095, 2009.
DOI : 10.1039/b812184b

B. Shao, L. Wu, J. Z. Wu, Y. H. Zheng, H. Zhao et al., Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress, Lab on a Chip, vol.250, issue.21, pp.3118-3125, 2009.
DOI : 10.1039/b909312e

S. M. Mcfaul, B. K. Lin, and H. Ma, Cell separation based on size and deformability using microfluidic funnel ratchets, Lab on a Chip, vol.106, issue.13, pp.2369-2376, 2012.
DOI : 10.1073/pnas.0903353106

A. Vanapalli, M. H. Duits, and F. Mugele, Microfluidics as a functional tool for cell mechanics, Biomicrofluidics, vol.3, issue.1, p.12006, 2009.
DOI : 10.1063/1.3067820

V. Preira, J. Grandné, S. Forel, M. Gabriele, O. Camara et al., Passive circulating cell sorting by deformability using a microfluidic gradual filter, Lab Chip, vol.5, issue.1, pp.161-170, 2013.
DOI : 10.1039/C2LC40847C

B. D. Huh, A. Matthews, M. Mammoto, H. Montoya-zavala, D. E. Yuan-hsin et al., Reconstituting Organ-Level Lung Functions on a Chip, Science, vol.328, issue.5986, pp.1662-1668, 2010.
DOI : 10.1126/science.1188302

S. Gunther, A. Yasotharan, C. Vagaon, S. Lochovsky, J. Pinto et al., A microfluidic platform for probing small artery structure and function, Lab on a Chip, vol.274, issue.18, pp.2341-2349, 2010.
DOI : 10.1039/c004675b

P. Shelby, J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu, A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes, Proceedings of the National Academy of Sciences, vol.100, issue.25, pp.14618-14622, 2001.
DOI : 10.1073/pnas.2433968100

M. Abkarian, H. A. Faivre, and . Stone, High-speed microfluidic differential manometer for cellular-scale hydrodynamics, Proceedings of the National Academy of Sciences, vol.103, issue.3, pp.538-542, 2006.
DOI : 10.1073/pnas.0507171102

E. Tsukada, C. Sekisuka, H. Oshio, and . Minamitani, Direct Measurement of Erythrocyte Deformability in Diabetes Mellitus with a Transparent Microchannel Capillary Model and High-Speed Video Camera System, Microvascular Research, vol.61, issue.3, pp.231-239, 2001.
DOI : 10.1006/mvre.2001.2307

P. Rand and A. C. Burton, Mechanical Properties of the Red Cell Membrane, Biophysical Journal, vol.4, issue.2, pp.115-135, 1964.
DOI : 10.1016/S0006-3495(64)86773-4

A. Lichtman, Rheology of Leukocytes, Leukocyte Suspensions, and Blood in Leukemia POSSIBLE RELATIONSHIP TO CLINICAL MANIFESTATIONS, Journal of Clinical Investigation, vol.52, issue.2, pp.350-358, 1973.
DOI : 10.1172/JCI107191

W. Schmid-schonbein, K. Sung, H. Tozere, R. Skalak, and S. Chien, Passive mechanical properties of human leukocytes, Biophysical Journal, vol.36, issue.1, pp.243-256, 1981.
DOI : 10.1016/S0006-3495(81)84726-1

A. M. Richelme, P. Benoliel, and . Bongrand, Dynamic study of cell mechanical and structural responses to rapid changes of calcium level, Cell Motility and the Cytoskeleton, vol.19, issue.2, pp.93-105, 2000.
DOI : 10.1002/(SICI)1097-0169(200002)45:2<93::AID-CM2>3.0.CO;2-Z

M. Herricks, P. K. Antia, and . Rathod, -infected red blood cells, Cellular Microbiology, vol.7, issue.9, pp.1340-1353, 2009.
DOI : 10.1111/j.1462-5822.2009.01334.x

C. Gifford, J. Derganc, S. S. Shevkoplyas, T. Yoshida, and M. W. Bitensky, A detailed study of time-dependent changes in human red blood cells: from reticulocyte maturation to erythrocyte senescence, British Journal of Haematology, vol.58, issue.3, pp.395-404, 2006.
DOI : 10.1016/0002-9343(83)91113-0

Y. Leong, Q. Li, C. T. Lim, and K. H. Chiam, Modeling cell entry into a micro-channel, Biomechanics and Modeling in Mechanobiology, vol.32, issue.2, pp.755-766, 2011.
DOI : 10.1007/s10237-010-0271-1

S. Guo, H. S. Park, and . Ma, Microfluidic micropipette aspiration for measuring the deformability of single cells, Lab on a Chip, vol.90, issue.10, pp.2687-2695, 2012.
DOI : 10.1039/c2lc40205j

A. Walter, T. Micoulet, J. P. Seufferlein, and . Spatz, Direct assessment of living cell mechanical responses during deformation inside microchannel restrictions, Biointerphases, vol.6, issue.3, pp.117-125, 2011.
DOI : 10.1116/1.3625258

T. Preira, M. Leoni, A. Valignat, P. Lellouch, J. Robert et al., Microfluidic tools to investigate pathologies in the blood microcirculation, International Journal of Nanotechnology, vol.9, issue.3/4/5/6/7, pp.529-547, 2012.
DOI : 10.1504/IJNT.2012.045340

G. M. Xia and . Whitesides, Soft Lithography, Angewandte Chemie International Edition, vol.37, issue.5, pp.550-575, 1998.
DOI : 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G

M. Tsuchiya, Y. Yamabe, Y. Yamaguchi, T. Kobayashi, K. Konno et al., Establishment and characterization of a human acute monocytic leukemia cell line (THP-1), International Journal of Cancer, vol.42, issue.2, pp.171-176, 1980.
DOI : 10.1002/ijc.2910260208

A. Vitte, P. Benoliel, P. Eymeric, A. Bongrand, and . Pierres, ??-1 Integrin-Mediated Adhesion May Be Initiated by Multiple Incomplete Bonds, Thus Accounting for the Functional Importance of Receptor Clustering, Biophysical Journal, vol.86, issue.6, pp.4059-4074, 2004.
DOI : 10.1529/biophysj.103.038778

N. Edelstein, K. Amodaj, R. Hoover, and N. Vale, Stuurman Computer Control of Microscopes Using 2Manager, Current Protocols in Molecular Biology, vol.20, pp.14-20, 2010.

A. Bathe, C. M. Shirai, R. D. Doerschuk, and . Kamm, Neutrophil Transit Times through Pulmonary Capillaries: The Effects of Capillary Geometry and fMLP-Stimulation, Biophysical Journal, vol.83, issue.4, pp.1917-1933, 2002.
DOI : 10.1016/S0006-3495(02)73955-6

V. Vitkova, M. Mader, and T. Podgorski, Deformation of vesicles flowing through capillaries, Europhysics Letters (EPL), vol.68, issue.3, pp.398-404, 2004.
DOI : 10.1209/epl/i2004-10211-9

URL : https://hal.archives-ouvertes.fr/hal-01261887

D. Bico and J. Quéré, Rise of Liquids and Bubbles in Angular Capillary Tubes, Journal of Colloid and Interface Science, vol.247, issue.1, pp.162-166, 2002.
DOI : 10.1006/jcis.2001.8106

B. Kolb, R. Cerro, and J. , Film Flow in the Space between a Circular Bubble and a Square Tube, Journal of Colloid and Interface Science, vol.159, issue.2, pp.302-311, 1993.
DOI : 10.1006/jcis.1993.1327

C. Thulasidas, M. A. Abraham, and R. L. Cerro, Bubble-train flow in capillaries of circular and square cross section, Chemical Engineering Science, vol.50, issue.2
DOI : 10.1016/0009-2509(94)00225-G

C. Ransohoff and C. J. Radke, Laminar flow of a wetting liquid along the corners of a predominantly gas-occupied noncircular pore, Journal of Colloid and Interface Science, vol.121, issue.2, pp.392-401, 1988.
DOI : 10.1016/0021-9797(88)90442-0

C. J. Wong, S. Radke, and . Morris, The motion of long bubbles in polygonal capillaries. Part 1. Thin films, Journal of Fluid Mechanics, vol.292, issue.-1, pp.71-94, 1995.
DOI : 10.1016/0021-9797(92)90138-C

C. J. Wong, S. Radke, and . Morris, The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow, Journal of Fluid Mechanics, vol.81, issue.-1, pp.95-110, 1995.
DOI : 10.1016/0095-8522(65)90061-9

A. Vanapalli, A. G. Banpurkar, D. Van-den-ende, M. H. Duits, and F. Mugele, Hydrodynamic resistance of single confined moving drops in rectangular microchannels, Lab Chip, vol.18, issue.7, pp.982-990, 2009.
DOI : 10.1039/B815002H

I. Dong and J. Chatziz, The Imbibition and Flow of a Wetting Liquid along the Corners of a Square Capillary Tube, Journal of Colloid and Interface Science, vol.172, issue.2, pp.278-288, 1995.
DOI : 10.1006/jcis.1995.1253

M. Hochmuth, Micropipette aspiration of living cells, Journal of Biomechanics, vol.33, issue.1, pp.15-22, 2000.
DOI : 10.1016/S0021-9290(99)00175-X

P. Bretherton, The motion of long bubbles in tubes, Journal of Fluid Mechanics, vol.194, issue.02, pp.166-188, 1961.
DOI : 10.1021/ie50601a051

R. Damiano, The Effect of the Endothelial-Cell Glycocalyx on the Motion of Red Blood Cells through Capillaries, Microvascular Research, vol.55, issue.1, pp.77-91, 1998.
DOI : 10.1006/mvre.1997.2052

E. Yeung and . Evans, Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets, Biophysical Journal, vol.56, issue.1, pp.139-149, 1989.
DOI : 10.1016/S0006-3495(89)82659-1

D. Trepat, A. S. Linhong, D. An, D. J. Navajas, W. T. Tschumperlin et al., Universal physical responses to stretch in the living cell, Nature, vol.97, issue.7144, pp.592-595, 2007.
DOI : 10.1038/nature05824