Modeling risk stratification in human cancer.

Abstract : MOTIVATION: Despite huge prognostic promises, gene expression-based survival assessment is rarely used in clinical routine. Main reasons include difficulties in performing and reporting analyses and restriction in most methods to one high-risk group with the vast majority of patients being unassessed. The present study aims at limiting these difficulties by (i) mathematically defining the number of risk groups without any a priori assumption; (ii) computing the risk of an independent cohort by considering each patient as a new patient incorporated to the validation cohort and (iii) providing an open-access Web site to freely compute risk for every new patient. RESULTS: Using the gene expression profiles of 551 patients with multiple myeloma, 602 with breast-cancer and 460 with glioma, we developed a model combining running log-rank tests under controlled chi-square conditions and multiple testing corrections to build a risk score and a classification algorithm using simultaneous global and between-group log-rank chi-square maximization. For each cancer entity, we provide a statistically significant three-group risk prediction model, which is corroborated with publicly available validation cohorts. CONCLUSION: In constraining between-group significances, the risk score compares favorably with previous risk classifications. AVAILABILITY: Risk assessment is freely available on the Web at for personal or test data files. Web site implementation in Perl, R and Apache.
Type de document :
Article dans une revue
Bioinformatics, Oxford University Press (OUP), 2013, 29 (9), pp.1149-57. 〈10.1093/bioinformatics/btt124〉
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger
Contributeur : Monique Frei <>
Soumis le : mardi 2 avril 2013 - 10:42:08
Dernière modification le : mercredi 3 octobre 2018 - 16:02:05
Document(s) archivé(s) le : dimanche 2 avril 2017 - 23:08:51


 Accès restreint
Fichier visible le : jamais

Connectez-vous pour demander l'accès au fichier



Thierry Rème, Dirk Hose, Charles Theillet, Bernard Klein. Modeling risk stratification in human cancer.. Bioinformatics, Oxford University Press (OUP), 2013, 29 (9), pp.1149-57. 〈10.1093/bioinformatics/btt124〉. 〈inserm-00806666〉



Consultations de la notice