R. Davis, H. Weintraub, and A. Lassar, Expression of a single transfected cDNA converts fibroblasts to myoblasts, Cell, vol.51, issue.6, pp.987-1000, 1987.
DOI : 10.1016/0092-8674(87)90585-X

K. Takahashi and S. Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, vol.126, issue.4, pp.663-676, 2006.
DOI : 10.1016/j.cell.2006.07.024

K. Plath and W. Lowry, Progress in understanding reprogramming to the induced pluripotent state, Nature Reviews Genetics, vol.28, issue.4, pp.253-265, 2011.
DOI : 10.1038/nrg2955

R. Li, J. Liang, S. Ni, T. Zhou, and X. Qing, A Mesenchymal-to-Epithelial Transition Initiates and Is Required for the Nuclear Reprogramming of Mouse Fibroblasts, Cell Stem Cell, vol.7, issue.1, pp.51-63, 2010.
DOI : 10.1016/j.stem.2010.04.014

P. Samavarchi-tehrani, A. Golipour, L. David, H. Sung, and T. Beyer, Functional Genomics Reveals a BMP-Driven Mesenchymal-to-Epithelial Transition in the Initiation of Somatic Cell Reprogramming, Cell Stem Cell, vol.7, issue.1, pp.64-77, 2010.
DOI : 10.1016/j.stem.2010.04.015

A. Banito, S. Rashid, J. Acosta, S. Li, and C. Pereira, Senescence impairs successful reprogramming to pluripotent stem cells, Genes & Development, vol.23, issue.18, pp.2134-2139, 2009.
DOI : 10.1101/gad.1811609

H. Hong, K. Takahashi, T. Ichisaka, T. Aoi, and O. Kanagawa, Suppression of induced pluripotent stem cell generation by the p53???p21 pathway, Nature, vol.11, issue.7259, pp.1132-1135, 2009.
DOI : 10.1038/nature08235

T. Kawamura, J. Suzuki, Y. Wang, S. Menendez, and L. Morera, Linking the p53 tumour suppressor pathway to somatic cell reprogramming, Nature, vol.24, issue.7259, pp.1140-1144, 2009.
DOI : 10.1038/nature08311

H. Li, M. Collado, A. Villasante, K. Strati, and S. Ortega, The Ink4/Arf locus is a barrier for iPS cell reprogramming, Nature, vol.7, issue.7259, pp.1136-1139, 2009.
DOI : 10.1038/nature08290

R. Marion, K. Strati, H. Li, M. Murga, and R. Blanco, A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity, Nature, vol.94, issue.7259, pp.1149-1153, 2009.
DOI : 10.1038/nature08287

J. Utikal, J. Polo, M. Stadtfeld, N. Maherali, and W. Kulalert, Immortalization eliminates a roadblock during cellular reprogramming into iPS cells, Nature, vol.445, issue.7259, pp.1145-1148, 2009.
DOI : 10.1038/nature08285

G. Liang, J. He, and Y. Zhang, Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in??reprogramming, Nature Cell Biology, vol.14, issue.5, pp.457-466, 2012.
DOI : 10.1016/j.stem.2009.12.001

A. Mansour, O. Gafni, L. Weinberger, A. Zviran, and M. Ayyash, The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming, Nature, vol.42, issue.7411, 2012.
DOI : 10.1038/nature11272

T. Onder, N. Kara, A. Cherry, A. Sinha, and N. Zhu, Chromatin-modifying enzymes as modulators of reprogramming, Nature, vol.483, issue.7391, pp.598-602, 2012.
DOI : 10.1093/bioinformatics/btm369

T. Wang, K. Chen, X. Zeng, Y. J. Wu, and Y. , The Histone Demethylases Jhdm1a/1b Enhance Somatic Cell Reprogramming in a Vitamin-C-Dependent Manner, Cell Stem Cell, vol.9, issue.6, pp.575-587, 2011.
DOI : 10.1016/j.stem.2011.10.005

R. Koche, Z. Smith, M. Adli, H. Gu, and M. Ku, Reprogramming Factor Expression Initiates Widespread Targeted Chromatin Remodeling, Cell Stem Cell, vol.8, issue.1, pp.96-105, 2011.
DOI : 10.1016/j.stem.2010.12.001

URL : http://doi.org/10.1016/j.stem.2010.12.001

N. Maherali, R. Sridharan, W. Xie, J. Utikal, and S. Eminli, Directly Reprogrammed Fibroblasts Show??Global??Epigenetic??Remodeling and??Widespread??Tissue??Contribution, Cell Stem Cell, vol.1, issue.1, pp.55-70, 2007.
DOI : 10.1016/j.stem.2007.05.014

L. Morey and K. Helin, Polycomb group protein-mediated repression of transcription, Trends in Biochemical Sciences, vol.35, issue.6, pp.323-332, 2010.
DOI : 10.1016/j.tibs.2010.02.009

F. Mohn, M. Weber, M. Rebhan, T. Roloff, and J. Richter, Lineage-Specific Polycomb Targets and De Novo DNA Methylation Define Restriction and Potential of Neuronal Progenitors, Molecular Cell, vol.30, issue.6, pp.755-766, 2008.
DOI : 10.1016/j.molcel.2008.05.007

F. Mohn and D. Schubeler, Genetics and epigenetics: stability and plasticity during cellular differentiation, Trends in Genetics, vol.25, issue.3, pp.129-136, 2009.
DOI : 10.1016/j.tig.2008.12.005

L. Boyer, K. Plath, J. Zeitlinger, T. Brambrink, and L. Medeiros, Polycomb complexes repress developmental regulators in murine embryonic stem cells, Nature, vol.125, issue.7091, pp.349-353, 2006.
DOI : 10.1016/0092-8674(92)90408-5

T. Lee, R. Jenner, L. Boyer, M. Guenther, and S. Levine, Control of Developmental Regulators by Polycomb in Human Embryonic Stem Cells, Cell, vol.125, issue.2, pp.301-313, 2006.
DOI : 10.1016/j.cell.2006.02.043

M. Leeb, D. Pasini, M. Novatchkova, M. Jaritz, and K. Helin, Polycomb complexes act redundantly to repress genomic repeats and genes, Genes & Development, vol.24, issue.3, pp.265-276, 2010.
DOI : 10.1101/gad.544410

O. Carroll, D. Erhardt, S. Pagani, M. Barton, S. Surani et al., The Polycomb-Group Gene Ezh2 Is Required for Early Mouse Development, Molecular and Cellular Biology, vol.21, issue.13, pp.4330-4336, 2001.
DOI : 10.1128/MCB.21.13.4330-4336.2001

D. Pasini, A. Bracken, J. Hansen, M. Capillo, and K. Helin, The Polycomb Group Protein Suz12 Is Required for Embryonic Stem Cell Differentiation, Molecular and Cellular Biology, vol.27, issue.10, pp.3769-3779, 2007.
DOI : 10.1128/MCB.01432-06

D. Pasini, A. Bracken, M. Jensen, L. Denchi, E. Helin et al., Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity, The EMBO Journal, vol.114, issue.20, pp.4061-4071, 2004.
DOI : 10.1074/jbc.M307344200

X. Shen, Y. Liu, Y. Hsu, Y. Fujiwara, and J. Kim, EZH1 Mediates Methylation on Histone H3 Lysine 27 and Complements EZH2 in Maintaining Stem Cell Identity and Executing Pluripotency, Molecular Cell, vol.32, issue.4, pp.491-502, 2008.
DOI : 10.1016/j.molcel.2008.10.016

V. Azuara, P. Perry, S. Sauer, M. Spivakov, and H. Jorgensen, Chromatin signatures of pluripotent cell lines, Nature Cell Biology, vol.28, issue.5, pp.532-538, 2006.
DOI : 10.1038/ncb1403

B. Bernstein, T. Mikkelsen, X. Xie, M. Kamal, and D. Huebert, A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells, Cell, vol.125, issue.2, pp.315-326, 2006.
DOI : 10.1016/j.cell.2006.02.041

I. Su, A. Basavaraj, A. Krutchinsky, O. Hobert, and A. Ullrich, Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement, Nature Immunology, vol.4, issue.2, pp.124-131, 2003.
DOI : 10.1038/ni876

C. Lengner, F. Camargo, K. Hochedlinger, G. Welstead, and S. Zaidi, Oct4 Expression Is Not Required for Mouse Somatic Stem Cell Self-Renewal, Cell Stem Cell, vol.1, issue.4, pp.403-415, 2007.
DOI : 10.1016/j.stem.2007.07.020

C. Sommer, M. Stadtfeld, G. Murphy, K. Hochedlinger, and D. Kotton, Induced Pluripotent Stem Cell Generation Using a Single Lentiviral Stem Cell Cassette, Stem Cells, vol.1, issue.3, pp.543-549, 2009.
DOI : 10.1634/stemcells.2008-1075

Q. Ying, J. Wray, J. Nichols, L. Batlle-morera, and B. Doble, The ground state of embryonic stem cell self-renewal, Nature, vol.113, issue.7194, pp.519-523, 2008.
DOI : 10.1038/nature06968

J. Silva, O. Barrandon, J. Nichols, J. Kawaguchi, and T. Theunissen, Promotion of Reprogramming to Ground State Pluripotency by Signal Inhibition, PLoS Biology, vol.365, issue.10, 2008.
DOI : 10.1371/journal.pbio.0060253.sd001

A. Bracken, D. Kleine-kohlbrecher, N. Dietrich, D. Pasini, and G. Gargiulo, The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells, Genes & Development, vol.21, issue.5, pp.525-530, 2007.
DOI : 10.1101/gad.415507

M. Serrano, H. Lee, L. Chin, C. Cordon-cardo, and D. Beach, Role of the INK4a Locus in Tumor Suppression and Cell Mortality, Cell, vol.85, issue.1, pp.27-37, 1996.
DOI : 10.1016/S0092-8674(00)81079-X

R. Margueron, G. Li, K. Sarma, A. Blais, and J. Zavadil, Ezh1 and Ezh2 Maintain Repressive Chromatin through Different Mechanisms, Molecular Cell, vol.32, issue.4, pp.503-518, 2008.
DOI : 10.1016/j.molcel.2008.11.004

M. Hansen, T. Gerds, O. Nielsen, J. Seidelin, and J. Troelsen, 2012) pcaGoPromoter?an R package for biological and regulatory interpretation of principal components in genome-wide gene expression data, PLoS ONE, vol.7

E. Ezhkova, W. Lien, N. Stokes, H. Pasolli, and J. Silva, EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair, Genes & Development, vol.25, issue.5, pp.485-498, 2011.
DOI : 10.1101/gad.2019811

J. Simon and R. Kingston, Mechanisms of Polycomb gene silencing: knowns and unknowns, Nature Reviews Molecular Cell Biology, vol.26, pp.697-708, 2009.
DOI : 10.1038/nrm2763

R. Margueron and D. Reinberg, The Polycomb complex PRC2 and its mark in life, Nature, vol.6, issue.7330, pp.343-349, 2011.
DOI : 10.1038/nature09784

E. Ezhkova, H. Pasolli, J. Parker, N. Stokes, and I. Su, Ezh2 Orchestrates Gene Expression for the Stepwise Differentiation of Tissue-Specific Stem Cells, Cell, vol.136, issue.6, pp.1122-1135, 2009.
DOI : 10.1016/j.cell.2008.12.043

Y. Hirabayashi, N. Suzki, M. Tsuboi, T. Endo, and T. Toyoda, Polycomb Limits the Neurogenic Competence of Neural Precursor Cells to Promote Astrogenic Fate Transition, Neuron, vol.63, issue.5, pp.600-613, 2009.
DOI : 10.1016/j.neuron.2009.08.021

G. Testa, The time of timing: How Polycomb proteins regulate neurogenesis, BioEssays, vol.29, issue.7, pp.519-528, 2011.
DOI : 10.1002/bies.201100021

C. Pereira, F. Piccolo, T. Tsubouchi, S. Sauer, and N. Ryan, ESCs Require PRC2 to Direct the Successful Reprogramming of Differentiated Cells toward Pluripotency, Cell Stem Cell, vol.6, issue.6, pp.547-556, 2010.
DOI : 10.1016/j.stem.2010.04.013

B. Munst, C. Patsch, and F. Edenhofer, Engineering Cell-permeable Protein, Journal of Visualized Experiments, issue.-1, 2009.
DOI : 10.3791/1627

R. Irizarry, B. Hobbs, C. F. Beazer-barclay, Y. Antonellis, and K. , Exploration, normalization, and summaries of high density oligonucleotide array probe level data, Biostatistics, vol.4, issue.2, pp.249-264, 2003.
DOI : 10.1093/biostatistics/4.2.249

R. Gentleman, V. Carey, D. Bates, B. Bolstad, and M. Dettling, Bioconductor: open software development for computational biology and bioinformatics, Genome Biology, vol.5, issue.10, p.80, 2004.
DOI : 10.1186/gb-2004-5-10-r80

A. Reiner, D. Yekutieli, and Y. Benjamini, Identifying differentially expressed genes using false discovery rate controlling procedures, Bioinformatics, vol.19, issue.3, pp.368-375, 2003.
DOI : 10.1093/bioinformatics/btf877

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.319.4699

S. Maere, K. Heymans, and M. Kuiper, BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks, Bioinformatics, vol.21, issue.16, pp.3448-3449, 2005.
DOI : 10.1093/bioinformatics/bti551

M. Smoot, K. Ono, J. Ruscheinski, P. Wang, and T. Ideker, Cytoscape 2.8: new features for data integration and network visualization, Bioinformatics, vol.27, issue.3, pp.431-432, 2011.
DOI : 10.1093/bioinformatics/btq675

B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biology, vol.10, issue.3, p.25, 2009.
DOI : 10.1186/gb-2009-10-3-r25

Y. Zhang, T. Liu, C. Meyer, J. Eeckhoute, and D. Johnson, Model-based Analysis of ChIP-Seq (MACS), Genome Biology, vol.9, issue.9, p.137, 2008.
DOI : 10.1186/gb-2008-9-9-r137

Q. Song and A. Smith, Identifying dispersed epigenomic domains from ChIP-Seq data, Bioinformatics, vol.27, issue.6, pp.870-871, 2011.
DOI : 10.1093/bioinformatics/btr030

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051331

M. Micsinai, F. Parisi, F. Strino, P. Asp, and B. Dynlacht, Picking ChIP-seq peak detectors for analyzing chromatin modification experiments, Nucleic Acids Research, vol.40, issue.9, p.70, 2012.
DOI : 10.1093/nar/gks048

R. Kinsella, A. Kahari, S. Haider, J. Zamora, and G. Proctor, Ensembl BioMarts: a hub for data retrieval across taxonomic space, Database, vol.2011, issue.0, p.30, 2011.
DOI : 10.1093/database/bar030

T. Ye, A. Krebs, M. Choukrallah, C. Keime, and F. Plewniak, seqMINER: an integrated ChIP-seq data interpretation platform, Nucleic Acids Research, vol.39, issue.6, p.35, 2011.
DOI : 10.1093/nar/gkq1287