Y. Ozier, Transfusion-related acute lung injury: reports to the French Hemovigilance Network 2007 through 2008, Transfusion, vol.31, issue.1, pp.2102-2112, 2007.
DOI : 10.1111/j.1537-2995.2011.03073.x

B. Shaz, S. Stowell, and C. Hillyer, Transfusion-related acute lung injury: from bedside to bench and back, Blood, vol.117, issue.5, pp.1463-71, 2011.
DOI : 10.1182/blood-2010-04-278135

A. Eder, Transfusion-related acute lung injury surveillance (2003-2005) and the potential impact of the selective use of plasma from male donors in the American Red Cross, Transfusion, vol.112, issue.4, pp.599-607, 2007.
DOI : 10.1111/j.0958-7578.2004.00492.x

U. Sachs, Recent insights into the mechanism of transfusion-related acute lung injury, Current Opinion in Hematology, vol.18, issue.6, pp.436-478, 2011.
DOI : 10.1097/MOH.0b013e32834bab01

J. Lee and M. Gladwin, Bad Blood: The risks of red cell storage, Nature Medicine, vol.119, issue.4, pp.381-383, 2010.
DOI : 10.1038/nm0410-381

E. Vamvakas and M. Blajchman, Blood Still Kills: Six Strategies to Further Reduce Allogeneic Blood Transfusion-Related Mortality, Transfusion Medicine Reviews, vol.24, issue.2, pp.77-124, 2010.
DOI : 10.1016/j.tmrv.2009.11.001

E. Vamvakas, Transfusion-associated cancer recurrence and postoperative infection: meta-analysis of randomized, controlled clinical trials, Transfusion, vol.36, issue.2, pp.175-86, 1996.
DOI : 10.1046/j.1537-2995.1996.36296181932.x

E. Vamvakas and M. Blajchman, Transfusion-related immunomodulation (TRIM): An update, Blood Reviews, vol.21, issue.6, pp.327-375, 2007.
DOI : 10.1016/j.blre.2007.07.003

G. Opelz, PROSPECTIVE EVALUATION OF PRETRANSPLANT BLOOD TRANSFUSIONS IN CADAVER KIDNEY RECIPIENTS, Transplantation, vol.63, issue.7, pp.964-971, 1997.
DOI : 10.1097/00007890-199704150-00010

M. Flye, DONOR-SPECIFIC TRANSFUSIONS HAVE LONG-TERM BENEFICIAL EFFECTS FOR HUMAN RENAL ALLOGRAFTS1, Transplantation, vol.60, issue.12, pp.1395-401, 1995.
DOI : 10.1097/00007890-199560120-00004

H. Marti, Effect of donor-specific transfusions on the outcome of renal allografts in the cyclosporine era, Transplant International, vol.26, issue.1, pp.19-26, 2006.
DOI : 10.1111/j.1600-6143.2004.00640.x

M. Rumsby, J. Trotter, D. Allan, and R. Michell, Recovery of Membrane Micro-vesicles from Human Erythrocytes Stored for Transfusion: A Mechanism for the Erythrocyte Discocyte-to-Spherocyte Shape Transformation, Biochemical Society Transactions, vol.5, issue.1, pp.126-134, 1977.
DOI : 10.1042/bst0050126

M. Mincheff, Changes in Donor Leukocytes during Blood Storage. Implications on Post- Transfusion Immunomodulation and Transfusion-Associated GVHD, Vox Sanguinis, vol.63, issue.S2, pp.189-200, 1998.
DOI : 10.1111/j.1423-0410.1998.tb05420.x

F. Frabetti, White cell apoptosis in packed red cells, Transfusion, vol.2, issue.11-12, pp.1082-1091, 1998.
DOI : 10.1046/j.1537-2995.1998.38111299056320.x

A. Martelli, Nuclear matrix protein is released from apoptotic white cells during cold (1-6oC) storage of concentrated red cell units and might induce antibody response in multiply transfused patients, Transfusion, vol.7, issue.2, pp.169-77, 2000.
DOI : 10.1084/jem.188.2.387

J. Li, Y. Xia, A. Bertino, J. Coburn, and D. Kuter, The mechanism of apoptosis in human platelets during storage, Transfusion, vol.92, issue.11, pp.1320-1329, 2000.
DOI : 10.1074/jbc.271.9.4961

F. Frabetti, White cell apoptosis in platelet concentrates, Transfusion, vol.87, issue.2, pp.160-168, 2000.
DOI : 10.1046/j.1537-2995.1997.37197176945.x

T. Reid, G. Esteban, M. Clear, and M. Gorogias, Platelet membrane integrity during storage and activation, Transfusion, vol.30, issue.6, pp.616-640, 1999.
DOI : 10.1006/cryo.1997.2020

A. Bontadini, P. Tazzari, S. Manfroi, C. Tassi, and R. Conte, Apoptosis in leucodepleted packed red blood cells, Vox Sanguinis, vol.41, issue.1, pp.35-41, 2002.
DOI : 10.1046/j.1423-0410.2002.00191.x

A. Bertino, X. Qi, J. Li, Y. Xia, and D. Kuter, Apoptotic markers are increased in platelets stored at 37oC, Transfusion, vol.75, issue.7, pp.857-66, 2003.
DOI : 10.1016/S0092-8674(00)81590-1

P. Perrotta, C. Perrotta, and E. Snyder, Apoptotic activity in stored human platelets, Transfusion, vol.13, issue.4, pp.526-561, 2003.
DOI : 10.1046/j.1537-2995.2003.00349.x

V. Leytin, D. Allen, A. Mutlu, S. Mykhaylov, E. Lyubimov et al., Platelet activation and apoptosis are different phenomena: evidence from the sequential dynamics and the magnitude of responses during platelet storage, British Journal of Haematology, vol.93, issue.3, pp.494-501, 2008.
DOI : 10.1111/j.1365-2141.2008.07209.x

A. Lawrie, P. Harrison, R. Cardigan, and I. Mackie, The characterization and impact of microparticles on haemostasis within fresh-frozen plasma, Vox Sanguinis, vol.32, issue.Suppl. 1, pp.197-204, 2008.
DOI : 10.1111/j.1423-0410.2008.01081.x

O. Rubin, D. Crettaz, G. Canellini, J. Tissot, and N. Lion, Microparticles in stored red blood cells: an approach using flow cytometry and proteomic tools, Vox Sanguinis, vol.27, issue.4, pp.288-97, 2008.
DOI : 10.1111/j.1423-0410.2008.01101.x

U. Salzer, Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin, Transfusion, vol.230, issue.3, pp.451-62, 2008.
DOI : 10.1073/pnas.0609009103

A. Albanyan, P. Harrison, and M. Murphy, Markers of platelet activation and apoptosis during storage of apheresis- and buffy coat-derived platelet concentrates for 7 days, Transfusion, vol.8, issue.1, pp.108-125, 2009.
DOI : 10.1111/j.1537-2995.2008.01942.x

M. Antonelou, A. Kriebardis, K. Stamoulis, E. Economou-petersen, L. Margaritis et al., Red blood cell aging markers during storage in citrate-phosphate-dextrose-saline-adenine-glucose-mannitol, Transfusion, vol.28, issue.2, pp.376-89, 2010.
DOI : 10.1111/j.1537-2995.2009.02449.x

P. Cookson, Platelet apoptosis and activation in platelet concentrates stored for up to 12 days in plasma or additive solution, Transfusion Medicine, vol.14, issue.(Suppl. 1), pp.392-402, 2010.
DOI : 10.1111/j.1365-3148.2010.01034.x

W. Jy, L. Horstman, and Y. Ahn, Microparticle Size and Its Relation to Composition, Functional Activity, and Clinical Significance, Seminars in Thrombosis and Hemostasis, vol.36, issue.08, pp.876-80, 2010.
DOI : 10.1055/s-0030-1267041

A. Sugawara, K. Nollet, K. Yajima, S. Saito, and H. Ohto, Preventing platelet-derived microparticle formation--and possible side effects-with prestorage leukofiltration of whole blood, Arch Pathol Lab Med, vol.134, pp.771-776, 2010.

Y. Xu, N. Nakane, and E. Maurer-spurej, Novel test for microparticles in platelet-rich plasma and platelet concentrates using dynamic light scattering, Transfusion, vol.102, issue.2, pp.363-70, 2011.
DOI : 10.1111/j.1537-2995.2010.02819.x

N. Matijevic, Y. Wang, V. Kostousov, C. Wade, K. Vijayan et al., Decline in platelet microparticles contributes to reduced hemostatic potential of stored plasma, Thrombosis Research, vol.128, issue.1, pp.35-41, 2011.
DOI : 10.1016/j.thromres.2011.02.011

F. Keating, S. Butenas, M. Fung, and D. Schneider, Platelet-white blood cell (WBC) interaction, WBC apoptosis, and procoagulant activity in stored red blood cells, Transfusion, vol.42, issue.2, pp.1086-95, 2011.
DOI : 10.1111/j.1537-2995.2010.02950.x

W. Jy, M. Ricci, S. Shariatmadar, O. Gomez-marin, L. Horstman et al., Microparticles in stored red blood cells as potential mediators of transfusion complications, Transfusion, vol.39, issue.11, pp.886-93, 2011.
DOI : 10.1111/j.1537-2995.2011.03099.x

A. Lawrie, A. Albanyan, R. Cardigan, I. Mackie, and P. Harrison, Microparticle sizing by dynamic light scattering in fresh-frozen plasma, Vox Sanguinis, vol.51, issue.3, pp.206-218, 2009.
DOI : 10.1111/j.1423-0410.2008.01151.x

M. Jacobson, J. Burne, and M. Raff, Programmed cell death and Bcl-2 protection in the absence of a nucleus, Embo J, vol.13, pp.1899-910, 1994.

W. Dzik, Apoptosis, TGF?? and transfusion-related immunosuppression: Biologic versus clinical effects, Transfusion and Apheresis Science, vol.29, issue.2, pp.127-136, 2003.
DOI : 10.1016/S1473-0502(03)00115-0

E. Snyder and D. Kuter, Apoptosis in transfusion medicine:of death and dying-is that all there is?, Transfusion, vol.68, issue.2, pp.135-143, 2000.
DOI : 10.1046/j.1537-2995.1998.38111299056320.x

C. Thery, M. Ostrowski, and E. Segura, Membrane vesicles as conveyors of immune responses, Nature Reviews Immunology, vol.166, issue.8, pp.581-93, 2009.
DOI : 10.1038/nri2567

R. Berckmans, R. Nieuwland, A. Boing, F. Romijn, C. Hack et al., Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation, Thromb Haemost, vol.85, pp.639-685, 2001.

T. Griffith and T. Ferguson, Cell Death in the Maintenance and Abrogation of Tolerance: The Five Ws of Dying Cells, Immunity, vol.35, issue.4, pp.456-66, 2011.
DOI : 10.1016/j.immuni.2011.08.011

P. Saas, F. Bonnefoy, S. Kury-paulin, F. Kleinclauss, and S. Perruche, Mediators Involved in the Immunomodulatory Effects of Apoptotic Cells, Transplantation, vol.84, issue.Supplement, pp.31-35, 2007.
DOI : 10.1097/01.tp.0000269113.59857.d6

URL : https://hal.archives-ouvertes.fr/inserm-00479706

P. Saas, B. Gaugler, and S. Perruche, Intravenous apoptotic cell infusion as a cell-based therapy toward improving hematopoietic cell transplantation outcome, Annals of the New York Academy of Sciences, vol.371, issue.1, pp.118-144, 2010.
DOI : 10.1111/j.1749-6632.2010.05741.x

C. Gregory and J. Pound, Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues, The Journal of Pathology, vol.465, issue.2, pp.177-94, 2011.
DOI : 10.1002/path.2792

K. Ravichandran, Beginnings of a Good Apoptotic Meal: The Find-Me and Eat-Me Signaling Pathways, Immunity, vol.35, issue.4, pp.445-55, 2011.
DOI : 10.1016/j.immuni.2011.09.004

B. Frey and U. Gaipl, The immune functions of phosphatidylserine in membranes of dying cells and microvesicles, Seminars in Immunopathology, vol.62, issue.Pt 1, pp.497-516, 2011.
DOI : 10.1007/s00281-010-0228-6

L. Stuart, M. Lucas, C. Simpson, J. Lamb, J. Savill et al., Inhibitory Effects of Apoptotic Cell Ingestion upon Endotoxin-Driven Myeloid Dendritic Cell Maturation, The Journal of Immunology, vol.168, issue.4, pp.1627-1662, 2002.
DOI : 10.4049/jimmunol.168.4.1627

S. Perruche, P. Saas, and W. Chen, Apoptotic cell-mediated suppression of streptococcal cell wall-induced arthritis is associated with alteration of macrophage function and local regulatory T-cell increase: a potential cell-based therapy?, Arthritis Research & Therapy, vol.11, issue.4, p.104, 2009.
DOI : 10.1186/ar2750

URL : https://hal.archives-ouvertes.fr/inserm-00484287

F. Kleinclauss, Intravenous apoptotic spleen cell infusion induces a TGF-??-dependent regulatory T-cell expansion, Cell Death and Differentiation, vol.63, issue.1, pp.41-52, 2006.
DOI : 10.1016/j.jim.2004.08.011

URL : https://hal.archives-ouvertes.fr/inserm-00473141

S. Perruche, P. Zhang, Y. Liu, P. Saas, J. Bluestone et al., CD3-specific antibody-induced immune tolerance involves transforming growth factor-beta from phagocytes digesting apoptotic T cells
URL : https://hal.archives-ouvertes.fr/inserm-00483517

M. Bittencourt, Intravenous injection of apoptotic leukocytes enhances bone marrow engraftment across major histocompatibility barriers, Blood, vol.98, issue.1, pp.224-254, 2001.
DOI : 10.1182/blood.V98.1.224

F. Bonnefoy, Plasmacytoid Dendritic Cells Play a Major Role in Apoptotic Leukocyte-Induced Immune Modulation, The Journal of Immunology, vol.186, issue.10, pp.5696-705, 2011.
DOI : 10.4049/jimmunol.1001523

S. Perruche, F. Kleinclauss, B. Mde, C. Paris, D. Tiberghien et al., Intravenous Infusion of Apoptotic Cells Simultaneously with Allogeneic Hematopoietic Grafts Alters Anti-Donor Humoral Immune Responses, American Journal of Transplantation, vol.3, issue.8, pp.1361-1366, 2004.
DOI : 10.1038/71472

E. Sun, Allograft tolerance induced by donor apoptotic lymphocytes requires phagocytosis in the recipient, Cell Death and Differentiation, vol.11, issue.12, pp.1258-64, 2004.
DOI : 10.1038/sj.cdd.4401500

Y. Miyake, K. Asano, H. Kaise, M. Uemura, M. Nakayama et al., Critical role of macrophages in the marginal zone in the suppression of immune responses to apoptotic cell???associated antigens, Journal of Clinical Investigation, vol.117, issue.8, pp.2268-78, 2007.
DOI : 10.1172/JCI31990DS1

M. Huynh, V. Fadok, and P. Henson, Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-??1 secretion and the resolution of inflammation, Journal of Clinical Investigation, vol.109, issue.1, pp.41-50, 2002.
DOI : 10.1172/JCI0211638

A. Bondanza, Inhibition of Phosphatidylserine Recognition Heightens the Immunogenicity of Irradiated Lymphoma Cells In Vivo, The Journal of Experimental Medicine, vol.159, issue.9, pp.1157-65, 2004.
DOI : 10.1038/sj.cdd.4400491

K. Asano, Masking of Phosphatidylserine Inhibits Apoptotic Cell Engulfment and Induces Autoantibody Production in Mice, The Journal of Experimental Medicine, vol.1334, issue.4, pp.459-67, 2004.
DOI : 10.1182/blood-2002-07-1951

W. Dzik, M. Mincheff, and F. Puppo, An Alternative Mechanism for the Immunosuppressive Effect of Transfusion, Vox Sanguinis, vol.97, issue.Suppl 2, pp.417-426, 2002.
DOI : 10.1111/j.1423-0410.2002.tb05344.x

H. Kono and K. Rock, How dying cells alert the immune system to danger, Nature Reviews Immunology, vol.171, issue.4, pp.279-89, 2008.
DOI : 10.1038/nri2215

S. Jackson and S. Schoenwaelder, Procoagulant platelets: are they necrotic?, Blood, vol.116, issue.12, pp.2011-2019, 2010.
DOI : 10.1182/blood-2010-01-261669

D. Connor, T. Exner, D. Ma, and J. Joseph, The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib, Thrombosis and Haemostasis, vol.103, issue.5, pp.1044-52, 2010.
DOI : 10.1160/TH09-09-0644

J. Tissot, O. Rubin, and G. Canellini, Analysis and clinical relevance of microparticles from red blood cells, Current Opinion in Hematology, vol.17, issue.6, pp.571-578, 2010.
DOI : 10.1097/MOH.0b013e32833ec217

O. Gasser and J. Schifferli, Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis, Blood, vol.104, issue.8, pp.2543-2551, 2004.
DOI : 10.1182/blood-2004-01-0361

B. Koppler, C. Cohen, D. Schlondorff, and M. Mack, Differential mechanisms of microparticle transfer toB cells and monocytes: anti-inflammatory propertiesof microparticles, European Journal of Immunology, vol.106, issue.3, pp.648-60, 2006.
DOI : 10.1002/eji.200535435

C. Eken, O. Gasser, G. Zenhaeusern, I. Oehri, C. Hess et al., Polymorphonuclear Neutrophil-Derived Ectosomes Interfere with the Maturation of Monocyte-Derived Dendritic Cells, The Journal of Immunology, vol.180, issue.2, pp.817-841, 2008.
DOI : 10.4049/jimmunol.180.2.817

S. Sadallah, C. Eken, and J. Schifferli, Erythrocyte-derived ectosomes have immunosuppressive properties, Journal of Leukocyte Biology, vol.84, issue.5, pp.1316-1341, 2008.
DOI : 10.1189/jlb.0108013

F. Angelot, Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases, Haematologica, vol.94, issue.11, pp.1502-1514, 2009.
DOI : 10.3324/haematol.2009.010934

URL : https://hal.archives-ouvertes.fr/inserm-00484284

L. Lima, R. Chammas, R. Monteiro, M. Moreira, and M. Barcinski, Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine

C. Eken, P. Martin, S. Sadallah, S. Treves, M. Schaller et al., Ectosomes Released by Polymorphonuclear Neutrophils Induce a MerTK-dependent Anti-inflammatory Pathway in Macrophages, Journal of Biological Chemistry, vol.285, issue.51, pp.39914-39935, 2010.
DOI : 10.1074/jbc.M110.126748

S. Sadallah, C. Eken, P. Martin, and J. Schifferli, Microparticles (Ectosomes) Shed by Stored Human Platelets Downregulate Macrophages and Modify the Development of Dendritic Cells, The Journal of Immunology, vol.186, issue.11, pp.6543-52, 2011.
DOI : 10.4049/jimmunol.1002788

M. Swiecki and M. Colonna, Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance, Immunological Reviews, vol.205, issue.Suppl 5, pp.142-62, 2010.
DOI : 10.1111/j.0105-2896.2009.00881.x

R. Figueiredo, Characterization of Heme as Activator of Toll-like Receptor 4, Journal of Biological Chemistry, vol.282, issue.28, pp.20221-20230, 2007.
DOI : 10.1074/jbc.M610737200

F. Pelletier, Increased Levels of Circulating Endothelial-Derived Microparticles and Small-Size Platelet-Derived Microparticles in Psoriasis, Journal of Investigative Dermatology, vol.131, issue.7, pp.1573-1579, 2011.
DOI : 10.1038/jid.2011.57

URL : https://hal.archives-ouvertes.fr/hal-00727643

L. Rettig, Particle size and activation threshold: a new dimension of danger signaling, Blood, vol.115, issue.22, pp.4533-4574, 2010.
DOI : 10.1182/blood-2009-11-247817

S. Franz, After shrinkage apoptotic cells expose internal membrane-derived epitopes on their plasma membranes, Cell Death and Differentiation, vol.171, issue.4, pp.733-775, 2007.
DOI : 10.1038/348162a0

J. Fransen, Mouse dendritic cells matured by ingestion of apoptotic blebs induce T cells to produce interleukin-17, Arthritis & Rheumatism, vol.40, issue.8, pp.2304-2317, 2009.
DOI : 10.1002/art.24719