Text S1: Supporting Information for

“A Network Perspective on Metabolic Inconsistency”

Gene expression data.

Aldosterone producing adenomas were obtained through the COMETE network from patients who had
undergone surgery for lateralized PAL at the Hopital Européen Georges Pompidou between 2002 and 2006.
Methods for screening and criteria for diagnosing PAL were in accordance with institutional guidelines
and have been described recently [11]. The clinical and biological characteristics of the patients are
resumed in Boulkroun et al. [4]. Eleven control normal adrenals (CA) were obtained from enlarged
nephrectomies (kindly provided by the department of Pathology of the University Hospital of Rouen,
Hoépital Tenon as described previously [5]). Total RNA isolation from the tissues as well as procedures
for labeling and hybridization to Applied Biosystems AB1700 Human Genome Survey Arrays has been
described previously [2]. This transcriptome profiling technique is considered to be of particularly high
sensitivity [12], and raw data were quality controlled using recently described procedures [6]. Here,
logarithmized transcript levels from 58 adenomas and 11 control tissue samples were mapped onto the
GPR (gene-protein-reaction) associations included in the Human Recon 1 model. Therefore, it was
necessary to replace logical AND and OR by min and maz functions, respectively, following the protocol

described in [3]. The EBER2 gene expression has been published in [8].

Context-specific flux balance analysis.

The optimization problem which is solved by GIMME can be formulated in the following way:

n
Minimize I=73" pjll
j=1
subject to S-v=0 (1)
Vmin < V < Vimax

obj obj
v > p22 .

The inconsistency score [ is, technically speaking, the sum of all fluxes going through unexpressed re-
actions weighted by the respective experimental data p;. Furthermore, n is the number of reactions/fluxes

v, S represents the stoichiometry of the system as a matrix, and v2%_ is the maximal flux through the



proposed objective reaction v°% (v2%  is determined in a previous step by standard FBA without taking
the experimental data into account). The condition v°% > v2% .| forces the system to operate at or
above some level I chosen from the interval (0,1]. The norm |v;| can be omitted by using exclusively
irreversible reactions. This can be achieved by replacing reversible reactions with pairs of irreversible

reactions.

The weighting vector p; is constructed in the following way:

b, t—x; if x;<t | @)
0 if x;>t¢

where t is a threshold applied to the gene expression data = that classifies reactions as either expressed
(x; > t) or not expressed (z; < t) using the gene expression data x. Fluxes through expressed reactions
are thus not minimized in equation (1). Conversely, the usage (reinsertion) of fluxes through unexpressed
reactions are weighted by the distance of the expression level from the threshold ¢ — z; in equation (1).
Context-specific flux balance analysis of human expression data was conducted using the GIMME
algorithm as described in [3] and in the introduction to this work. ATP-production was implemented
as a cellular objective by introducing an artificial reaction that consumes cytosolic ATP. The aldos-
terone objective was implemented as the maximization of flux through aldosterone synthase (model ID:
P45011B21m). The pathway to aldosterone was initially blocked in the metabolic reconstruction. Fur-
ther analysis revealed 4-Methylpentanal as a dead-end metabolite inhibiting steady-state flux to the
aldosterone synthase reaction. The introduction of an artificial drain for 4-Methylpentanal restored the
functionality of the whole pathway. Furthermore, the same conservative approach was chosen regarding
missing GPR: reactions without GPR associations were assumed to be expressed, i.e., having expression
values above t. The aldosterone objective and the parameters t = 2 and [ = 0.8 were used throughout

the study, if not stated otherwise.

Expression data integration into constraint-based modeling approaches

Different approaches have been proposed for the incorporation of experimental data into CBM:
Akesson et al. [1] exploit the fact that under steady state conditions the absence of gene expression

coincides with the corresponding protein unavailability, and thus inactivity of the corresponding reactions.



Thus, the flux through an enzymatically catalyzed reaction is constrained to zero if the gene corresponding
to the enzyme is not expressed in an experimental data set.

The GIMME (Gene Inactivity Moderated by Metabolism and Expression) algorithm proposed by
Becker and Palsson [3] relaxes the rigid approach described by Akesson et al. [1] by reinserting unexpressed
reactions back into the system if a proposed cellular objective is not achieved. The sum over these
reinserted fluxes is termed inconsistency (I) and is minimized during the GIMME optimization. The
inconsistency I gives, on the one hand, an estimate of the quality of the computed flux distribution, and
measures, on the other hand, the coherence of the objective and the experimental data.

Shlomi et al. [14] proposed a mixed-integer optimization problem formulation that allows the compu-
tation of tissue-specific, steady-state flux-distributions that match experimental data at hand as close as
possible. In particular, it is not necessary to formulate a cellular objective function. The model building
algorithm (MBA) published by [10] goes even a step further by using multiple experimental and bibliomic
data sources to prune a generic model into a full-fledged, tissue-specific model.

In contrast to the previously described approaches, the E-flux method developed by Colijn et al.
[7] uses experimental data directly as boundaries in the linear programming formulation. It has been
successfully utilized for a comprehensive study of Mycobacterium tuberculosis mycolic acid metabolism
predicting accurately the effects of a series of anti-TB drugs [7].

All previously described approaches (with the exception of the E-flux method [7]) have in common
that they rely on subjective and somewhat arbitrary thresholds for the classification of genes into discrete
categories, e.g., expressed and not expressed Metabolic Adjustment by Differential Expression (MADE),
as developed by Jensen and Papin [9], is the newest in the family of methods for integrating gene expression
data with metabolic networks. It eliminates the need for arbitrary thresholding by taking the statistical
significance of differentially expressed genes into account, rendering it suitable for time series expression

profiles.

Anticorrelation of MC and I: different dataset and objective

It is noteworthy, that a qualitatively similar negative correlation between metabolic coherence and incon-
sistency was also found using a more generic objective function, i.e., ATP production S1. Furthermore,
in order to investigate if the observed anticorrelation between both measures holds true for other data,

especially where the inconsistency difference between patient and control data is not as pronounced as for



the adenoma data, we recapitulate the results from the adenoma data for a strikingly different dataset
(see Figure S2) and objective (ATP production). This data were obtained by overexpression of the viral
EBER2 RNA, as well as a mutant derivative thereof in a human cell culture system. Detailed information
on this study can be found in [8]. We currently ignore the mechanism by which EBER2 RNAs control
cellular metabolism, however, point out that these effects are strikingly correlated when comparing the
GIMME and MC methods, and again would neither have been appreciable using other methodology, nor

reflect an underlying structure in the data that could have been uncovered by other methodology.

Supporting information for Table 1 (main manuscript)
Pathway maps

Pathways maps, referenced in Table 1 (Slaa, Slcarb, Sllip, SIvit), are provided electronically due to
size limitations. The maps depict the usage patterns and inconsistency contributions for the overall
contributions (page i), control (page ii), LIG (page iii), and HIG (page iv). The thickness and color
of a reaction edge corresponds to the usage frequency and the contribution strength, respectively. The

pathway maps have been obtained from the BIGG database [13].

Path from tyrosine to fumarate and acetoacetate

Tyrosine, which is not provided in the in silico medium (see Table S1), and is build from phenylala-
nine under a strong contribution of PHETHPTOX2 (phenylalanine 4-monoozygenase), seems to be in-
volved in another highly contributing pathway that leads from tyrosine to fumarate and acetoacetate
(see Figure S4). The entry and output point, TYRTA (tyrosine transaminase) and FUMAC (fumaryl-
acetoacetase), of this chain of reactions seem to be expressed, whereas the intermediate steps, 34HP-
POR (4-hydroxyphenylpyruvate diozygenase), HGNTOR (homogentisate 1,2-diozygenase), and MACACI
(maleylacetoacetate isomerase), are all unspecific contributors enlisted in Table 1 and Supporting Ta-

ble S2.

Supporting Figures
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Supplementary Fig. S1. Comparison of metabolic coherence and inconsistency measures. (a) The
ATP-production inconsistency values are plotted against the M C' of 69 tumor and control data sets. A
clear negative correlation is visible (Pearson’s product-moment correlation coefficient » = —0.64, with

p < 1.4 x 102 determined by one-tailed ¢ statistic, and Spearman’s rank correlation coefficient
p=—0.68;t=1.9; [ =0.95). (b) Dependency of the correlation on the threshold parameter (I = 0.95).
(c) Dependency of the correlation on the level parameter (¢t = 1.9). (d) Medium dependency of negative
correlation strength. Both Spearman’s rank correlation coefficient as well as Pearson’s correlation where
computed for the MC and the inconsistency for 100 random growth media (¢t = 2.; [ = 0.95). Dashed
lines in (b) and (c) indicate the parameters that have been used in (a). Arrows in (d) indicate the
correlation values found in (a).
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Supplementary Fig. S2. Comparison of metabolic coherence and inconsistency measures for the
EBER?2 data set. (a) The ATP-production inconsistency values are plotted against the MC of the
different EBER2 transfection studies [8]. A clear negative correlation is visible (Pearson’s
product-moment correlation coefficient » = —0.78, with p < 2.8 x 10™° determined by one-tailed ¢

statistic, and Spearman’s rank correlation coefficient p = —0.80; ¢ = 1.5; [ = 0.95). (b) Dependency of

the correlation on the threshold parameter (I = 0.95). (c¢) Dependency of the correlation on the level
parameter (¢t = 1.5). (d) Medium dependency of negative correlation strength. Both Spearman’s rank
correlation coefficient as well as Pearson’s correlation where computed for the M C and the

inconsistency for 100 random growth media (¢ = 1.5; I = 0.95). Dashed lines in (b) and (c) indicate the

parameters that have been used in (a). Arrows in (d) indicate the correlation values found in (a).
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Supplementary Fig. S3. Inconsistency contributions. (a) Overall contributions to the inconsistency
for all adenoma and control samples, (b) the control group, and the adenoma tumor samples showing
(c) lower and (d) higher inconsistencies in comparison to the control group. The contributions have
been normalized by the sample size, respectively. Only a subset of all contributing reactions is shown
due to space limitations.
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Supplementary Fig. S4. Pathway leading from tyrosine to fumarate and acetoacetate. Dashed lines
indicate the threshold used for the GIMME computations.
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Supplementary Fig. S5. Distributions of reactions expression values of the unspecific contributions
in Table 1 and Supporting Table S2. The control is depicted in purple, the LIG and HIG in green and
red, respectively, and the dashed line indicates the threshold used for the GIMME computations.
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Supplementary Fig. S6. Distributions of reactions expression values of the specific contributions in
Table 1 and Supporting Table S2. The control is depicted in purple, the LIG and HIG in green and red,
respectively, and the dashed line indicates the threshold used for the GIMME computations.
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Supplementary Fig. S7. Currency metabolite removal. The negative correlation between MC' and
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Supplementary Table S1. Medium condition from [15]. Exchange reactions not mentioned in the
table default to a lower bound (uptake) of 0 and an upper bound (secretion) of 10000. DM reactions
not mentioned in the table default to a lower(upper) bound of 0(10000).

Reaction name Lower bound Upper bound
DM_13-cis-oretn(n) 0 0
DM_13-cis-retn(n) 0 0
DM_avitel(c) 0 0
DM _avite2(c) 0 0
DM _bvite(c) 0 0
DM._yvite(c) 0 0
EX_arg-L(e) -1 10000
EX_fe2(e) 0 0
EX_gle(e) -1 10000
EX _glyc(e) -1 10000
EX_h(e) -1 10000
EX_h2o(e) -1 10000
EX_hdca(e) -1 10000
EX_his-L(e) -1 10000
EX_ile-L(e) -1 10000
EX leu-L(e) -1 10000
EX Inlc(e) -1 10000
EX_lys-L(e) -1 10000
EX_met-L(e) -1 10000
EX_02(e) ~10000 10000
EX_phe-L(e) 1 10000
EX_pi(e) -1 10000
EX _so4(e) -1 10000
EX_thr-L(e) -1 10000
EX_trp-L(e) -1 10000

EX_val-L(e) -1 10000
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