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Text S1: Supporting Information for

“A Network Perspective on Metabolic Inconsistency”

Gene expression data.

Aldosterone producing adenomas were obtained through the COMETE network from patients who had

undergone surgery for lateralized PAL at the Hôpital Européen Georges Pompidou between 2002 and 2006.

Methods for screening and criteria for diagnosing PAL were in accordance with institutional guidelines

and have been described recently [11]. The clinical and biological characteristics of the patients are

resumed in Boulkroun et al. [4]. Eleven control normal adrenals (CA) were obtained from enlarged

nephrectomies (kindly provided by the department of Pathology of the University Hospital of Rouen,

Hôpital Tenon as described previously [5]). Total RNA isolation from the tissues as well as procedures

for labeling and hybridization to Applied Biosystems AB1700 Human Genome Survey Arrays has been

described previously [2]. This transcriptome profiling technique is considered to be of particularly high

sensitivity [12], and raw data were quality controlled using recently described procedures [6]. Here,

logarithmized transcript levels from 58 adenomas and 11 control tissue samples were mapped onto the

GPR (gene-protein-reaction) associations included in the Human Recon 1 model. Therefore, it was

necessary to replace logical AND and OR by min and max functions, respectively, following the protocol

described in [3]. The EBER2 gene expression has been published in [8].

Context-specific flux balance analysis.

The optimization problem which is solved by GIMME can be formulated in the following way:

Minimize I =
n∑

j=1

pj |vj |

subject to S · v = 0

vmin ≤ v ≤ vmax

vobj ≥ vobjmax · l.

(1)

The inconsistency score I is, technically speaking, the sum of all fluxes going through unexpressed re-

actions weighted by the respective experimental data pj . Furthermore, n is the number of reactions/fluxes

v, S represents the stoichiometry of the system as a matrix, and vobjmax is the maximal flux through the
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proposed objective reaction vobj (vobjmax is determined in a previous step by standard FBA without taking

the experimental data into account). The condition vobj ≥ vobjmax · l forces the system to operate at or

above some level l chosen from the interval (0, 1]. The norm |vj | can be omitted by using exclusively

irreversible reactions. This can be achieved by replacing reversible reactions with pairs of irreversible

reactions.

The weighting vector pj is constructed in the following way:

pj =

 t− xj if xj < t

0 if xj ≥ t
, (2)

where t is a threshold applied to the gene expression data x that classifies reactions as either expressed

(xj ≥ t) or not expressed (xj < t) using the gene expression data x. Fluxes through expressed reactions

are thus not minimized in equation (1). Conversely, the usage (reinsertion) of fluxes through unexpressed

reactions are weighted by the distance of the expression level from the threshold t− xj in equation (1).

Context-specific flux balance analysis of human expression data was conducted using the GIMME

algorithm as described in [3] and in the introduction to this work. ATP-production was implemented

as a cellular objective by introducing an artificial reaction that consumes cytosolic ATP. The aldos-

terone objective was implemented as the maximization of flux through aldosterone synthase (model ID:

P45011B21m). The pathway to aldosterone was initially blocked in the metabolic reconstruction. Fur-

ther analysis revealed 4-Methylpentanal as a dead-end metabolite inhibiting steady-state flux to the

aldosterone synthase reaction. The introduction of an artificial drain for 4-Methylpentanal restored the

functionality of the whole pathway. Furthermore, the same conservative approach was chosen regarding

missing GPR: reactions without GPR associations were assumed to be expressed, i.e., having expression

values above t. The aldosterone objective and the parameters t = 2 and l = 0.8 were used throughout

the study, if not stated otherwise.

Expression data integration into constraint-based modeling approaches

Different approaches have been proposed for the incorporation of experimental data into CBM:

Akesson et al. [1] exploit the fact that under steady state conditions the absence of gene expression

coincides with the corresponding protein unavailability, and thus inactivity of the corresponding reactions.
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Thus, the flux through an enzymatically catalyzed reaction is constrained to zero if the gene corresponding

to the enzyme is not expressed in an experimental data set.

The GIMME (Gene Inactivity Moderated by Metabolism and Expression) algorithm proposed by

Becker and Palsson [3] relaxes the rigid approach described by Akesson et al. [1] by reinserting unexpressed

reactions back into the system if a proposed cellular objective is not achieved. The sum over these

reinserted fluxes is termed inconsistency (I) and is minimized during the GIMME optimization. The

inconsistency I gives, on the one hand, an estimate of the quality of the computed flux distribution, and

measures, on the other hand, the coherence of the objective and the experimental data.

Shlomi et al. [14] proposed a mixed-integer optimization problem formulation that allows the compu-

tation of tissue-specific, steady-state flux-distributions that match experimental data at hand as close as

possible. In particular, it is not necessary to formulate a cellular objective function. The model building

algorithm (MBA) published by [10] goes even a step further by using multiple experimental and bibliomic

data sources to prune a generic model into a full-fledged, tissue-specific model.

In contrast to the previously described approaches, the E-flux method developed by Colijn et al.

[7] uses experimental data directly as boundaries in the linear programming formulation. It has been

successfully utilized for a comprehensive study of Mycobacterium tuberculosis mycolic acid metabolism

predicting accurately the effects of a series of anti-TB drugs [7].

All previously described approaches (with the exception of the E-flux method [7]) have in common

that they rely on subjective and somewhat arbitrary thresholds for the classification of genes into discrete

categories, e.g., expressed and not expressed Metabolic Adjustment by Differential Expression (MADE),

as developed by Jensen and Papin [9], is the newest in the family of methods for integrating gene expression

data with metabolic networks. It eliminates the need for arbitrary thresholding by taking the statistical

significance of differentially expressed genes into account, rendering it suitable for time series expression

profiles.

Anticorrelation of MC and I: different dataset and objective

It is noteworthy, that a qualitatively similar negative correlation between metabolic coherence and incon-

sistency was also found using a more generic objective function, i.e., ATP production S1. Furthermore,

in order to investigate if the observed anticorrelation between both measures holds true for other data,

especially where the inconsistency difference between patient and control data is not as pronounced as for
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the adenoma data, we recapitulate the results from the adenoma data for a strikingly different dataset

(see Figure S2) and objective (ATP production). This data were obtained by overexpression of the viral

EBER2 RNA, as well as a mutant derivative thereof in a human cell culture system. Detailed information

on this study can be found in [8]. We currently ignore the mechanism by which EBER2 RNAs control

cellular metabolism, however, point out that these effects are strikingly correlated when comparing the

GIMME and MC methods, and again would neither have been appreciable using other methodology, nor

reflect an underlying structure in the data that could have been uncovered by other methodology.

Supporting information for Table 1 (main manuscript)

Pathway maps

Pathways maps, referenced in Table 1 (SIaa, SIcarb, SIlip, SIvit), are provided electronically due to

size limitations. The maps depict the usage patterns and inconsistency contributions for the overall

contributions (page i), control (page ii), LIG (page iii), and HIG (page iv). The thickness and color

of a reaction edge corresponds to the usage frequency and the contribution strength, respectively. The

pathway maps have been obtained from the BIGG database [13].

Path from tyrosine to fumarate and acetoacetate

Tyrosine, which is not provided in the in silico medium (see Table S1), and is build from phenylala-

nine under a strong contribution of PHETHPTOX2 (phenylalanine 4-monooxygenase), seems to be in-

volved in another highly contributing pathway that leads from tyrosine to fumarate and acetoacetate

(see Figure S4). The entry and output point, TYRTA (tyrosine transaminase) and FUMAC (fumaryl-

acetoacetase), of this chain of reactions seem to be expressed, whereas the intermediate steps, 34HP-

POR (4-hydroxyphenylpyruvate dioxygenase), HGNTOR (homogentisate 1,2-dioxygenase), and MACACI

(maleylacetoacetate isomerase), are all unspecific contributors enlisted in Table 1 and Supporting Ta-

ble S2.

Supporting Figures
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Supplementary Fig. S1. Comparison of metabolic coherence and inconsistency measures. (a) The
ATP-production inconsistency values are plotted against the MC of 69 tumor and control data sets. A
clear negative correlation is visible (Pearson’s product-moment correlation coefficient r = −0.64, with
p ≤ 1.4× 10−9 determined by one-tailed t statistic, and Spearman’s rank correlation coefficient
ρ = −0.68; t = 1.9; l = 0.95). (b) Dependency of the correlation on the threshold parameter (l = 0.95).
(c) Dependency of the correlation on the level parameter (t = 1.9). (d) Medium dependency of negative
correlation strength. Both Spearman’s rank correlation coefficient as well as Pearson’s correlation where
computed for the MC and the inconsistency for 100 random growth media (t = 2.; l = 0.95). Dashed
lines in (b) and (c) indicate the parameters that have been used in (a). Arrows in (d) indicate the
correlation values found in (a).
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Supplementary Fig. S2. Comparison of metabolic coherence and inconsistency measures for the
EBER2 data set. (a) The ATP-production inconsistency values are plotted against the MC of the
different EBER2 transfection studies [8]. A clear negative correlation is visible (Pearson’s
product-moment correlation coefficient r = −0.78, with p ≤ 2.8× 10−9 determined by one-tailed t
statistic, and Spearman’s rank correlation coefficient ρ = −0.80; t = 1.5; l = 0.95). (b) Dependency of
the correlation on the threshold parameter (l = 0.95). (c) Dependency of the correlation on the level
parameter (t = 1.5). (d) Medium dependency of negative correlation strength. Both Spearman’s rank
correlation coefficient as well as Pearson’s correlation where computed for the MC and the
inconsistency for 100 random growth media (t = 1.5; l = 0.95). Dashed lines in (b) and (c) indicate the
parameters that have been used in (a). Arrows in (d) indicate the correlation values found in (a).
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Supplementary Fig. S3. Inconsistency contributions. (a) Overall contributions to the inconsistency
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Supplementary Table S1. Medium condition from [15]. Exchange reactions not mentioned in the
table default to a lower bound (uptake) of 0 and an upper bound (secretion) of 10000. DM reactions
not mentioned in the table default to a lower(upper) bound of 0(10000).

Reaction name Lower bound Upper bound

DM 13-cis-oretn(n) 0 0
DM 13-cis-retn(n) 0 0
DM avite1(c) 0 0
DM avite2(c) 0 0
DM bvite(c) 0 0
DM yvite(c) 0 0
EX arg-L(e) -1 10000
EX fe2(e) 0 0
EX glc(e) -1 10000
EX glyc(e) -1 10000
EX h(e) -1 10000
EX h2o(e) -1 10000
EX hdca(e) -1 10000
EX his-L(e) -1 10000
EX ile-L(e) -1 10000
EX leu-L(e) -1 10000
EX lnlc(e) -1 10000
EX lys-L(e) -1 10000
EX met-L(e) -1 10000
EX o2(e) -10000 10000
EX phe-L(e) -1 10000
EX pi(e) -1 10000
EX so4(e) -1 10000
EX thr-L(e) -1 10000
EX trp-L(e) -1 10000
EX val-L(e) -1 10000
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