S. Nisole and A. Saib, Early steps of retrovirus replicative cycle, Retrovirology, vol.1, issue.1, p.9, 2004.
DOI : 10.1186/1742-4690-1-9

B. Bowerman, P. Brown, and J. Bishop, A nucleoprotein complex mediates the integration of retroviral DNA., Genes & Development, vol.3, issue.4, pp.469-478, 1989.
DOI : 10.1101/gad.3.4.469

P. Brown, B. Bowerman, H. Varmus, and J. Bishop, Correct integration of retroviral DNA in vitro, Cell, vol.49, issue.3, pp.347-356, 1987.
DOI : 10.1016/0092-8674(87)90287-X

T. Fujiwara and K. Mizuuchi, Retroviral DNA integration: Structure of an integration intermediate, Cell, vol.54, issue.4, pp.497-504, 1988.
DOI : 10.1016/0092-8674(88)90071-2

V. Ellison, H. Abrams, T. Roe, J. Lifson, and P. Brown, Human immunodeficiency virus integration in a cell-free system, J Virol, vol.64, pp.2711-2715, 1990.

C. Farnet and W. Haseltine, Integration of human immunodeficiency virus type 1 DNA in vitro., Proceedings of the National Academy of Sciences, vol.87, issue.11, pp.4164-4168, 1990.
DOI : 10.1073/pnas.87.11.4164

M. Hansen and F. Bushman, Human immunodeficiency virus type 2 preintegration complexes: activities in vitro and response to inhibitors, J Virol, vol.71, pp.3351-3356, 1997.

F. Bushman, T. Fujiwara, and R. Craigie, Retroviral DNA integration directed by HIV integration protein in vitro, Science, vol.249, issue.4976, pp.1555-1558, 1990.
DOI : 10.1126/science.2171144

R. Craigie, T. Fujiwara, and F. Bushman, The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro, Cell, vol.62, issue.4, pp.829-837, 1990.
DOI : 10.1016/0092-8674(90)90126-Y

A. Engelman, K. Mizuuchi, and R. Craigie, HIV-1 DNA integration: Mechanism of viral DNA cleavage and DNA strand transfer, Cell, vol.67, issue.6, pp.1211-1221, 1991.
DOI : 10.1016/0092-8674(91)90297-C

H. Chen, S. Wei, and A. Engelman, Multiple Integrase Functions Are Required to Form the Native Structure of the Human Immunodeficiency Virus Type I Intasome, Journal of Biological Chemistry, vol.274, issue.24, pp.17358-17364, 1999.
DOI : 10.1074/jbc.274.24.17358

S. Wei, K. Mizuuchi, and R. Craigie, A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration, The EMBO Journal, vol.16, issue.24, pp.7511-7520, 1997.
DOI : 10.1093/emboj/16.24.7511

S. Wei, K. Mizuuchi, and R. Craigie, Footprints on the viral DNA ends in Moloney murine leukemia virus preintegration complexes reflect a specific association with integrase, Proceedings of the National Academy of Sciences, vol.95, issue.18, pp.10535-10540, 1998.
DOI : 10.1073/pnas.95.18.10535

P. Brown, B. Bowerman, H. Varmus, and J. Bishop, Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein., Proceedings of the National Academy of Sciences, vol.86, issue.8, pp.2525-2529, 1989.
DOI : 10.1073/pnas.86.8.2525

C. Pauza, Two bases are deleted from the termini of HIV-1 linear DNA during integrative recombination, Virology, vol.179, issue.2, pp.886-889, 1990.
DOI : 10.1016/0042-6822(90)90161-J

K. Yoder and F. Bushman, Repair of Gaps in Retroviral DNA Integration Intermediates, Journal of Virology, vol.74, issue.23, pp.11191-11200, 2000.
DOI : 10.1128/JVI.74.23.11191-11200.2000

K. Vincent, D. York-higgins, M. Quiroga, and P. Brown, Host sequences flanking the HIV provirus, Nucleic Acids Research, vol.18, issue.20, pp.6045-6047, 1990.
DOI : 10.1093/nar/18.20.6045

M. Bukrinsky, N. Sharova, T. Mcdonald, T. Pushkarskaya, W. Tarpley et al., Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection., Proceedings of the National Academy of Sciences, vol.90, issue.13, pp.6125-6129, 1993.
DOI : 10.1073/pnas.90.13.6125

C. Farnet and F. Bushman, HIV-1 cDNA Integration: Requirement of HMG I(Y) Protein for Function of Preintegration Complexes In Vitro, Cell, vol.88, issue.4, pp.483-492, 1997.
DOI : 10.1016/S0092-8674(00)81888-7

C. Farnet and W. Haseltine, Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex, J Virol, vol.65, pp.1910-1915, 1991.

P. Gallay, S. Swingler, J. Song, F. Bushman, and D. Trono, HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase, Cell, vol.83, issue.4, pp.569-576, 1995.
DOI : 10.1016/0092-8674(95)90097-7

S. Iordanskiy, R. Berro, M. Altieri, F. Kashanchi, M. Bukrinsky et al., Intracytoplasmic maturation of the human immunodeficiency virus type 1 reverse transcription complexes determines their capacity to integrate into chromatin Characterization of HIV replication complexes early after cell-to-cell infection, Retrovirology AIDS Res Hum Retroviruses, vol.3, issue.9, pp.817-823, 1993.

M. Miller, C. Farnet, and F. Bushman, Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition, J Virol, vol.71, pp.5382-5390, 1997.

L. Li, K. Yoder, M. Hansen, J. Olvera, M. Miller et al., Retroviral cDNA Integration: Stimulation by HMG I Family Proteins, Journal of Virology, vol.74, issue.23, pp.10965-10974, 2000.
DOI : 10.1128/JVI.74.23.10965-10974.2000

L. Li, J. Olvera, K. Yoder, R. Mitchell, S. Butler et al., Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection, The EMBO Journal, vol.20, issue.12, pp.3272-3281, 2001.
DOI : 10.1093/emboj/20.12.3272

C. Lin and A. Engelman, The Barrier-to-Autointegration Factor Is a Component of Functional Human Immunodeficiency Virus Type 1 Preintegration Complexes, Journal of Virology, vol.77, issue.8, pp.5030-5036, 2003.
DOI : 10.1128/JVI.77.8.5030-5036.2003

M. Llano, M. Vanegas, O. Fregoso, D. Saenz, S. Chung et al., LEDGF/p75 Determines Cellular Trafficking of Diverse Lentiviral but Not Murine Oncoretroviral Integrase Proteins and Is a Component of Functional Lentiviral Preintegration Complexes, Journal of Virology, vol.78, issue.17, pp.9524-9537, 2004.
DOI : 10.1128/JVI.78.17.9524-9537.2004

Y. Suzuki and R. Craigie, The road to chromatin ??? nuclear entry of retroviruses, Nature Reviews Microbiology, vol.5, issue.3, pp.187-196, 2007.
DOI : 10.1038/nrmicro1579

N. Arhel, S. Souquere-besse, S. Munier, P. Souque, S. Guadagnini et al., HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore, The EMBO Journal, vol.9, issue.12, pp.3025-3037, 2007.
DOI : 10.1038/sj.emboj.7601740

URL : https://hal.archives-ouvertes.fr/hal-00167661

V. Zennou, C. Petit, D. Guetard, U. Nerhbass, L. Montagnier et al., HIV-1 Genome Nuclear Import Is Mediated by a Central DNA Flap, Cell, vol.101, issue.2, pp.173-185, 2000.
DOI : 10.1016/S0092-8674(00)80828-4

M. Yamashita and M. Emerman, The Cell Cycle Independence of HIV Infections Is Not Determined by Known Karyophilic Viral Elements, PLoS Pathogens, vol.69, issue.3, p.18, 2005.
DOI : 10.1371/journal.ppat.0010018.sg001

M. Yamashita, O. Perez, T. Hope, and M. Emerman, Evidence for Direct Involvement of the Capsid Protein in HIV Infection of Nondividing Cells, PLoS Pathogens, vol.7, issue.10, pp.1502-1510, 2007.
DOI : 0736-6205(1989)007[0980:IRVFGT]2.0.CO;2

A. Brass, D. Dykxhoorn, Y. Benita, N. Yan, A. Engelman et al., Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen, Science, vol.319, issue.5865, pp.921-926, 2008.
DOI : 10.1126/science.1152725

F. Christ, W. Thys, D. Rijck, J. Gijsbers, R. Albanese et al., Transportin-SR2 Imports HIV into the Nucleus, Current Biology, vol.18, issue.16, pp.1192-1202, 2008.
DOI : 10.1016/j.cub.2008.07.079

R. Konig, Y. Zhou, D. Elleder, T. Diamond, G. Bonamy et al., Global Analysis of Host-Pathogen Interactions that Regulate Early-Stage HIV-1 Replication, Cell, vol.135, issue.1, pp.49-60, 2008.
DOI : 10.1016/j.cell.2008.07.032

D. Iaco, A. Luban, and J. , Inhibition of HIV-1 infection by TNPO3 depletion is determined by capsid and detectable after viral cDNA enters the nucleus, Retrovirology, vol.8, issue.1, p.98, 2011.
DOI : 10.1016/j.jviromet.2008.10.012

T. Schaller, K. Ocwieja, J. Rasaiyaah, A. Price, T. Brady et al., HIV-1 Capsid-Cyclophilin Interactions Determine Nuclear Import Pathway, Integration Targeting and Replication Efficiency, PLoS Pathogens, vol.7, issue.12, p.1002439, 2011.
DOI : 10.1371/journal.ppat.1002439.s010

L. Zhou, E. Sokolskaja, C. Jolly, W. James, S. Cowley et al., Transportin 3 Promotes a Nuclear Maturation Step Required for Efficient HIV-1 Integration, PLoS Pathogens, vol.7, issue.8, p.1002194, 2011.
DOI : 10.1371/journal.ppat.1002194.s007

N. Kataoka, J. Bachorik, and G. Dreyfuss, Transportin-SR, a Nuclear Import Receptor for SR Proteins, The Journal of Cell Biology, vol.15, issue.6, pp.1145-1152, 1999.
DOI : 10.1126/science.8385799

J. Rain, A. Cribier, A. Gerard, S. Emiliani, and R. Benarous, Yeast two-hybrid detection of integrase???host factor interactions, Methods, vol.47, issue.4, pp.291-297, 2009.
DOI : 10.1016/j.ymeth.2009.02.002

A. Cribier, E. Segeral, O. Delelis, V. Parissi, A. Simon et al., Mutations affecting interaction of integrase with TNPO3 do not prevent HIV-1 cDNA nuclear import, Retrovirology, vol.8, issue.1, p.104, 2011.
DOI : 10.1093/emboj/20.24.7333

URL : https://hal.archives-ouvertes.fr/inserm-00674026

L. Krishnan, K. Matreyek, I. Oztop, K. Lee, C. Tipper et al., The Requirement for Cellular Transportin 3 (TNPO3 or TRN-SR2) during Infection Maps to Human Immunodeficiency Virus Type 1 Capsid and Not Integrase, Journal of Virology, vol.84, issue.1, pp.397-406, 2010.
DOI : 10.1128/JVI.01899-09

W. Thys, D. Houwer, S. Demeulemeester, J. Taltynov, O. Vancraenenbroeck et al., Interplay between HIV Entry and Transportin-SR2 Dependency, Retrovirology, vol.8, issue.1, p.7, 2011.
DOI : 10.1186/1742-4690-8-7

URL : http://doi.org/10.1186/1742-4690-8-7

P. Cherepanov, G. Maertens, and S. Hare, Structural insights into the retroviral DNA integration apparatus, Current Opinion in Structural Biology, vol.21, issue.2, pp.249-256, 2011.
DOI : 10.1016/j.sbi.2010.12.005

X. Li, L. Krishnan, P. Cherepanov, and A. Engelman, Structural biology of retroviral DNA integration, Virology, vol.411, issue.2, pp.194-205, 2011.
DOI : 10.1016/j.virol.2010.12.008

A. Ciuffi, M. Llano, E. Poeschla, C. Hoffmann, J. Leipzig et al., A role for LEDGF/p75 in targeting HIV DNA integration, Nature Medicine, vol.17, issue.12, pp.1287-1289, 2005.
DOI : 10.1038/nm1329

H. Marshall, R. K. Berry, C. Llano, M. Sutherland, H. Saenz et al., Role of PSIP1/LEDGF/p75 in Lentiviral Infectivity and Integration Targeting, PLoS ONE, vol.103, issue.12, p.1340, 2007.
DOI : 10.1371/journal.pone.0001340.s003

M. Shun, N. Raghavendra, N. Vandegraaff, J. Daigle, S. Hughes et al., LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration, Genes & Development, vol.21, issue.14, pp.1767-1778, 2007.
DOI : 10.1101/gad.1565107

P. Cherepanov, G. Maertens, P. Proost, B. Devreese, J. Van-beeumen et al., HIV-1 Integrase Forms Stable Tetramers and Associates with LEDGF/p75 Protein in Human Cells, Journal of Biological Chemistry, vol.278, issue.1, pp.372-381, 2003.
DOI : 10.1074/jbc.M209278200

S. Emiliani, A. Mousnier, K. Busschots, M. Maroun, B. Van-maele et al., Integrase Mutants Defective for Interaction with LEDGF/p75 Are Impaired in Chromosome Tethering and HIV-1 Replication, Journal of Biological Chemistry, vol.280, issue.27, pp.25517-25523, 2005.
DOI : 10.1074/jbc.M501378200

F. Turlure, E. Devroe, P. Silver, and A. Engelman, Human cell proteins and human immunodeficiency virus DNA integration, Frontiers in Bioscience, vol.9, issue.1-3, pp.3187-3208, 2004.
DOI : 10.2741/1472

H. Ge and R. Roeder, Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class II genes, Cell, vol.78, issue.3, pp.513-523, 1994.
DOI : 10.1016/0092-8674(94)90428-6

H. Ge, Y. Si, and R. Roeder, Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation, The EMBO Journal, vol.17, issue.22, pp.6723-6729, 1998.
DOI : 10.1093/emboj/17.22.6723

A. Yokoyama and M. Cleary, Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell, pp.36-46, 2008.

A. Engelman and P. Cherepanov, The Lentiviral Integrase Binding Protein LEDGF/p75 and HIV-1 Replication, PLoS Pathogens, vol.4, issue.3, p.1000046, 2008.
DOI : 10.1371/journal.ppat.1000046.g004

E. Poeschla, H. Integrase, and . Replication, Integrase, LEDGF/p75 and HIV replication, Cellular and Molecular Life Sciences, vol.65, issue.9, pp.1403-1424, 2008.
DOI : 10.1007/s00018-008-7540-5

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3902792

K. Busschots, A. Voet, D. Maeyer, M. Rain, J. Emiliani et al., Identification of the LEDGF/p75 Binding Site in HIV-1 Integrase, Journal of Molecular Biology, vol.365, issue.5, pp.1480-1492, 2007.
DOI : 10.1016/j.jmb.2006.10.094

P. Cherepanov, Z. Sun, S. Rahman, G. Maertens, G. Wagner et al., Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75, Nature Structural & Molecular Biology, vol.2, issue.6, pp.526-532, 2005.
DOI : 10.1016/0263-7855(96)00009-4

S. Rahman, R. Lu, N. Vandegraaff, P. Cherepanov, and A. Engelman, Structure-based mutagenesis of the integrase-LEDGF/p75 interface uncouples a strict correlation between in vitro protein binding and HIV-1 fitness, Virology, vol.357, issue.1, pp.79-90, 2007.
DOI : 10.1016/j.virol.2006.08.011

J. De-rijck, L. Vandekerckhove, R. Gijsbers, A. Hombrouck, J. Hendrix et al., Overexpression of the Lens Epithelium-Derived Growth Factor/p75 Integrase Binding Domain Inhibits Human Immunodeficiency Virus Replication, Journal of Virology, vol.80, issue.23, pp.11498-11509, 2006.
DOI : 10.1128/JVI.00801-06

M. Llano, M. Vanegas, N. Hutchins, D. Thompson, S. Delgado et al., Identification and Characterization of the Chromatin-binding Domains of the HIV-1 Integrase Interactor LEDGF/p75, Journal of Molecular Biology, vol.360, issue.4, pp.760-773, 2006.
DOI : 10.1016/j.jmb.2006.04.073

L. Vandekerckhove, F. Christ, B. Van-maele, D. Rijck, J. Gijsbers et al., Transient and Stable Knockdown of the Integrase Cofactor LEDGF/p75 Reveals Its Role in the Replication Cycle of Human Immunodeficiency Virus, Journal of Virology, vol.80, issue.4, pp.1886-1896, 2006.
DOI : 10.1128/JVI.80.4.1886-1896.2006

S. Zielske and M. Stevenson, Modest but Reproducible Inhibition of Human Immunodeficiency Virus Type 1 Infection in Macrophages following LEDGFp75 Silencing, Journal of Virology, vol.80, issue.14, pp.7275-7280, 2006.
DOI : 10.1128/JVI.02470-05

P. Cherepanov, A. Ambrosio, S. Rahman, T. Ellenberger, and A. Engelman, Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75, Proceedings of the National Academy of Sciences, vol.102, issue.48, pp.17308-17313, 2005.
DOI : 10.1073/pnas.0506924102

S. Hare, M. Shun, S. Gupta, E. Valkov, A. Engelman et al., A Novel Co-Crystal Structure Affords the Design of Gain-of-Function Lentiviral Integrase Mutants in the Presence of Modified PSIP1/LEDGF/p75, PLoS Pathogens, vol.81, issue.1, p.1000259, 2009.
DOI : 10.1371/journal.ppat.1000259.s005

C. Petit, O. Schwartz, and F. Mammano, Oligomerization within virions and subcellular localization of human immunodeficiency virus type 1 integrase, J Virol, vol.73, pp.5079-5088, 1999.
URL : https://hal.archives-ouvertes.fr/pasteur-01372744

D. Gabuzda, K. Lawrence, E. Langhoff, E. Terwilliger, T. Dorfman et al., Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes, J Virol, vol.66, pp.6489-6495, 1992.

L. Mulder and M. Muesing, Degradation of HIV-1 Integrase by the N-end Rule Pathway, Journal of Biological Chemistry, vol.275, issue.38, pp.29749-29753, 2000.
DOI : 10.1074/jbc.M004670200

A. Mousnier, N. Kubat, A. Massias-simon, E. Segeral, J. Rain et al., von Hippel Lindau binding protein 1-mediated degradation of integrase affects HIV-1 gene expression at a postintegration step, Proceedings of the National Academy of Sciences, vol.104, issue.34, pp.13615-13620, 2007.
DOI : 10.1073/pnas.0705162104

URL : https://hal.archives-ouvertes.fr/hal-00182604

M. Llano, D. Saenz, A. Meehan, P. Wongthida, M. Peretz et al., An Essential Role for LEDGF/p75 in HIV Integration, Science, vol.314, issue.5798, pp.461-464, 2006.
DOI : 10.1126/science.1132319

X. Li, Y. Koh, and A. Engelman, Correlation of Recombinant Integrase Activity and Functional Preintegration Complex Formation during Acute Infection by Replication-Defective Integrase Mutant Human Immunodeficiency Virus, Journal of Virology, vol.86, issue.7, pp.3861-3879, 2012.
DOI : 10.1128/JVI.06386-11

E. Devroe, A. Engelman, and P. Silver, Intracellular transport of human immunodeficiency virus type 1 integrase, Journal of Cell Science, vol.116, issue.21, pp.4401-4408, 2003.
DOI : 10.1242/jcs.00747

M. Llano, S. Delgado, M. Vanegas, and E. Poeschla, Lens Epithelium-derived Growth Factor/p75 Prevents Proteasomal Degradation of HIV-1 Integrase, Journal of Biological Chemistry, vol.279, issue.53, pp.55570-55577, 2004.
DOI : 10.1074/jbc.M408508200

T. Tasaki, L. Mulder, A. Iwamatsu, M. Lee, I. Davydov et al., A Family of Mammalian E3 Ubiquitin Ligases That Contain the UBR Box Motif and Recognize N-Degrons, Molecular and Cellular Biology, vol.25, issue.16, pp.7120-7136, 2005.
DOI : 10.1128/MCB.25.16.7120-7136.2005

P. Gallay, S. Swingler, C. Aiken, and D. Trono, HIV-1 infection of nondividing cells: C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator, Cell, vol.80, issue.3, pp.379-388, 1995.
DOI : 10.1016/0092-8674(95)90488-3

A. Brussel and P. Sonigo, Analysis of Early Human Immunodeficiency Virus Type 1 DNA Synthesis by Use of a New Sensitive Assay for Quantifying Integrated Provirus, Journal of Virology, vol.77, issue.18, pp.10119-10124, 2003.
DOI : 10.1128/JVI.77.18.10119-10124.2003

J. Thomas, D. Ott, and R. Gorelick, Efficiency of Human Immunodeficiency Virus Type 1 Postentry Infection Processes: Evidence against Disproportionate Numbers of Defective Virions, Journal of Virology, vol.81, issue.8, pp.4367-4370, 2007.
DOI : 10.1128/JVI.02357-06

N. Yan, A. Regalado-magdos, B. Stiggelbout, M. Lee-kirsch, and J. Lieberman, The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1, Nature Immunology, vol.4, issue.11, pp.1005-1013, 2010.
DOI : 10.1128/JVI.02449-08

R. Swanstrom and J. Wills, Synthesis, assembly, and processing of viral proteins.I nRetroviruses, pp.263-334, 1997.

S. Hare, S. Gupta, E. Valkov, A. Engelman, and P. Cherepanov, Retroviral intasome assembly and inhibition of DNA strand transfer, Nature, vol.25, issue.7286, pp.232-236, 2010.
DOI : 10.1038/nature08784

L. Krishnan, X. Li, H. Naraharisetty, S. Hare, P. Cherepanov et al., Structure-based modeling of the functional HIV-1 intasome and its inhibition, Proceedings of the National Academy of Sciences, vol.107, issue.36, pp.15910-15915, 2010.
DOI : 10.1073/pnas.1002346107

M. Maroun, O. Delelis, G. Coadou, T. Bader, E. Segeral et al., Inhibition of Early Steps of HIV-1 Replication by SNF5/Ini1, Journal of Biological Chemistry, vol.281, issue.32, pp.22736-22743, 2006.
DOI : 10.1074/jbc.M604849200

L. Naldini, U. Blomer, F. Gage, D. Trono, and I. Verma, Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector., Proceedings of the National Academy of Sciences, vol.93, issue.21, pp.11382-11388, 1996.
DOI : 10.1073/pnas.93.21.11382

. Gérard, Identification of low molecular weight nuclear complexes containing integrase during the early stages of HIV-1 infection, Retrovirology, vol.10, issue.1, p.13, 2013.
DOI : 10.1073/pnas.93.21.11382