S. Jung, I. Huitinga, and B. Schmidt, Selective elimination of macrophages by dichlormethylene diphosphonate-containing liposomes suppresses experimental autoimmune neuritis, Journal of the Neurological Sciences, vol.119, issue.2, pp.195-202, 1993.
DOI : 10.1016/0022-510X(93)90134-K

M. Gray, W. Palispis, and P. Popovich, Macrophage depletion alters the blood???nerve barrier without affecting Schwann cell function after neural injury, Journal of Neuroscience Research, vol.20, issue.4, pp.766-777, 2007.
DOI : 10.1002/jnr.21166

D. Laskin and J. Laskin, Role of macrophages and inflammatory mediators in chemically induced toxicity, Toxicology, vol.160, issue.1-3, pp.111-118, 2001.
DOI : 10.1016/S0300-483X(00)00437-6

R. Craggs, R. King, and P. Thomas, The effect of suppression of macrophage activity on the development of experimental allergic neuritis, Acta Neuropathologica, vol.27, issue.4, pp.316-323, 1984.
DOI : 10.1007/BF00687614

W. Bruck, Y. Bruck, and U. Diederich, Dorsal root ganglia cocultured with macrophages: an in vitro model to study experimental demyelination, Acta Neuropathologica, vol.2, issue.5, pp.459-464, 1994.
DOI : 10.1007/BF00389499

J. Duffield, S. Forbes, and C. Constandinou, Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair, Journal of Clinical Investigation, vol.115, issue.1, pp.56-65, 2005.
DOI : 10.1172/JCI200522675

N. Hikawa and T. Takenaka, Myelin-stimulated macrophages release neurotrophic factors for adult dorsal root ganglion neurons in culture, Cellular and Molecular Neurobiology, vol.19, issue.4, pp.517-528, 1996.
DOI : 10.1007/BF02150231

O. Rapalino, O. Lazarov-spiegler, and E. Agranov, Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats, Nature Medicine, vol.336, issue.7, pp.814-821, 1998.
DOI : 10.1016/0361-9230(90)90264-Z

H. Luk, L. Noble, and Z. Werb, Macrophages contribute to the maintenance of stable regenerating neurites following peripheral nerve injury, Journal of Neuroscience Research, vol.18, issue.5, pp.644-658, 2003.
DOI : 10.1002/jnr.10701

Y. Shiratori, S. Hongo, and Y. Hikiba, Role of macrophages in regeneration of liver, Digestive Diseases and Sciences, vol.263, issue.10, pp.1939-1946, 1996.
DOI : 10.1007/BF02093593

L. Arnold, A. Henry, and F. Poron, Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, J EXP MED, vol.204, pp.1071-1081, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00136917

D. Sun, C. Martinez, and O. Ochoa, Bone marrow-derived cell regulation of skeletal muscle regeneration, The FASEB Journal, vol.23, issue.2, pp.382-395, 2009.
DOI : 10.1096/fj.07-095901

L. Zhang, L. Ran, and G. Garcia, Chemokine CXCL16 Regulates Neutrophil and Macrophage Infiltration into Injured Muscle, Promoting Muscle Regeneration, The American Journal of Pathology, vol.175, issue.6, pp.2518-2527, 2009.
DOI : 10.2353/ajpath.2009.090275

D. Mosser and J. Edwards, Exploring the full spectrum of macrophage activation, Nature Reviews Immunology, vol.117, issue.12, pp.958-969, 2008.
DOI : 10.1038/nri2448

F. Martinez, A. Sica, and A. Mantovani, Macrophage activation and polarization, Frontiers in Bioscience, vol.13, issue.13, pp.453-61453, 2008.
DOI : 10.2741/2692

O. Butovsky, Y. Ziv, and A. Schwartz, Microglia activated by IL-4 or IFN-?? differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells, Molecular and Cellular Neuroscience, vol.31, issue.1, pp.149-160, 2006.
DOI : 10.1016/j.mcn.2005.10.006

A. Mackey, S. Brandstetter, and P. Schjerling, Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle, The FASEB Journal, vol.25, issue.6, pp.1943-1959, 2011.
DOI : 10.1096/fj.10-176487

A. Mackey, M. Kjaer, and N. Charifi, Assessment of satellite cell number and activity status in human skeletal muscle biopsies, Muscle & Nerve, vol.18, issue.3, pp.455-465, 2009.
DOI : 10.1002/mus.21369

A. Mackey, J. Bojsen-moller, and K. Qvortrup, Evidence of skeletal muscle damage following electrically stimulated isometric muscle contractions in humans, Journal of Applied Physiology, vol.105, issue.5, pp.1620-1627, 2008.
DOI : 10.1152/japplphysiol.90952.2008

R. Crameri, P. Aagaard, and K. Qvortrup, voluntary contraction, The Journal of Physiology, vol.119, issue.11 Suppl, pp.365-380, 2007.
DOI : 10.1113/jphysiol.2007.128827

R. Crameri, H. Langberg, and P. Magnusson, Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise, The Journal of Physiology, vol.118, issue.1, pp.333-340, 2004.
DOI : 10.1113/jphysiol.2004.061846

B. Paylor, A. Natarajan, and R. Zhang, Nonmyogenic Cells in Skeletal Muscle Regeneration, CURR TOP DEV BIOL, vol.96, pp.139-165, 2011.
DOI : 10.1016/B978-0-12-385940-2.00006-1

L. Grand, F. Rudnicki, and M. , Skeletal muscle satellite cells and adult myogenesis, Current Opinion in Cell Biology, vol.19, issue.6, pp.628-633, 2007.
DOI : 10.1016/j.ceb.2007.09.012

S. Bonavaud, P. Thibert, and R. Gherardi, Primary human muscle satellite cell culture: Variations of cell yield, proliferation and differentiation rates according to age and sex of donors, site of muscle biopsy, and delay before processing, Biology of the Cell, vol.89, issue.3, pp.233-240, 1997.
DOI : 10.1111/j.1768-322X.1997.tb01011.x

C. Sonnet, P. Lafuste, and L. Arnold, Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems, Journal of Cell Science, vol.119, issue.12, pp.2497-2507, 2006.
DOI : 10.1242/jcs.02988

K. Lolmede, L. Campana, and M. Vezzoli, Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways, Journal of Leukocyte Biology, vol.85, issue.5, pp.779-787, 2009.
DOI : 10.1189/jlb.0908579

A. Kretowski, J. Mysliwiec, and I. Kinalska, In Vitro Interleukin-13 Production by Peripheral Blood in Patients with Newly Diagnosed Insulin-Dependent Diabetes Mellitus and Their First Degree Relatives, Scandinavian Journal of Immunology, vol.82, issue.3, pp.321-325, 2000.
DOI : 10.1007/s001250050716

H. Itaya, T. Imaizumi, and H. Yoshida, Expression of vascular endothelial growth factor in human monocyte/macrophages stimulated with lipopolysaccharide, THROMB HAEMOST, vol.85, pp.171-176, 2001.

R. Abou-khalil, L. Grand, F. Pallafacchina, and G. , Autocrine and Paracrine Angiopoietin 1/Tie-2 Signaling Promotes Muscle Satellite Cell Self-Renewal, Cell Stem Cell, vol.5, issue.3, pp.298-309, 2009.
DOI : 10.1016/j.stem.2009.06.001

M. Kitzmann, A. Bonnieu, and C. Duret, Inhibition of Notch signaling induces myotube hypertrophy by recruiting a subpopulation of reserve cells, Journal of Cellular Physiology, vol.166, issue.3, pp.538-548, 2006.
DOI : 10.1002/jcp.20688

B. Chazaud, C. Christov, and R. Gherardi, In vitro evaluation of human muscle satellite cell migration prior to fusion into myotubes, Journal of Muscle Research & Cell Motility, vol.19, issue.8, pp.931-936, 1998.
DOI : 10.1023/A:1005451725719

S. Chen, J. B. Li, and Y. , TNF-?? regulates myogenesis and muscle regeneration by activating p38 MAPK, AJP: Cell Physiology, vol.292, issue.5, pp.1660-1671, 2007.
DOI : 10.1152/ajpcell.00486.2006

B. Chazaud, C. Sonnet, and P. Lafuste, Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth, The Journal of Cell Biology, vol.47, issue.5, pp.1133-1143, 2003.
DOI : 10.1016/S0002-9440(10)62537-0

D. Rossi, M. Bernasconi, P. Baggi, and F. , Cytokines and chemokines are both expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation., International Immunology, vol.12, issue.9, pp.1329-1335, 2000.
DOI : 10.1093/intimm/12.9.1329

A. Winter and A. Bornemann, NCAM, vimentin and neonatal myosin heavy chain expression in human muscle diseases, Neuropathology and Applied Neurobiology, vol.141, issue.5, pp.417-424, 1999.
DOI : 10.1083/jcb.100.4.1157

K. Jansen and G. Pavlath, Mannose receptor regulates myoblast motility and muscle growth, The Journal of Cell Biology, vol.75, issue.3, pp.403-413, 2006.
DOI : 10.1002/glia.10196

J. Pollard, Trophic macrophages in development and disease, Nature Reviews Immunology, vol.87, issue.4, pp.259-270, 2009.
DOI : 10.1038/nri2528

S. Nucera, D. Biziato, and P. De, The interplay between macrophages and angiogenesis in development, tissue injury and regeneration, The International Journal of Developmental Biology, vol.55, issue.4-5, pp.495-503, 2011.
DOI : 10.1387/ijdb.103227sn

M. Hanspal, Y. Smockova, and Q. Uong, Molecular identification and functional characterization of a novel protein that mediates the attachment of erythroblasts to macrophages, BLOOD, vol.92, pp.2940-2950, 1998.

Y. Sadahira and M. Mori, Role of the macrophage in erythropoiesis, Pathology International, vol.49, issue.10, pp.841-848, 1999.
DOI : 10.1038/sj/leu/2401275

B. Fabriek, M. Polfliet, and R. Vloet, The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor, Blood, vol.109, issue.12, pp.5223-5229, 2007.
DOI : 10.1182/blood-2006-08-036467

I. Winkler, N. Sims, and A. Pettit, Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs, Blood, vol.116, issue.23, pp.4815-4828, 2010.
DOI : 10.1182/blood-2009-11-253534

A. Chow, D. Lucas, and A. Hidalgo, macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche, The Journal of Experimental Medicine, vol.130, issue.2, pp.261-271, 2011.
DOI : 10.1182/blood-2006-08-041384

S. Pull, J. Doherty, and J. Mills, Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury, Proceedings of the National Academy of Sciences, vol.102, issue.1, pp.99-104, 2004.
DOI : 10.1073/pnas.0405979102

D. Gyorki, M. Asselin-labat, and N. Van-rooijen, Resident macrophages influence stem cell activity in the mammary gland, Breast Cancer Research, vol.102, issue.4, p.62, 2009.
DOI : 10.1073/pnas.0405979102

N. Walton, B. Sutter, and E. Laywell, Microglia instruct subventricular zone neurogenesis, Glia, vol.9, issue.8, pp.815-825, 2006.
DOI : 10.1002/glia.20419

R. Shechter, A. London, and C. Varol, Infiltrating Blood-Derived Macrophages Are Vital Cells Playing an Anti-inflammatory Role in Recovery from Spinal Cord Injury in Mice, PLoS Medicine, vol.116, issue.7, p.1000113, 2009.
DOI : 10.1371/journal.pmed.1000113.s012

L. Diemel, S. Jackson, and M. Cuzner, Role for TGF-?1, FGF-2 and PDGF-AA in a myelination of CNS aggregate cultures enriched with macrophages, Journal of Neuroscience Research, vol.174, issue.6, pp.858-867, 2003.
DOI : 10.1002/jnr.10837

O. Butovsky, G. Landa, and G. Kunis, Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis, Journal of Clinical Investigation, vol.116, issue.4, pp.905-915, 2006.
DOI : 10.1172/JCI26836

C. Griffin, L. Apponi, and K. Long, Chemokine expression and control of muscle cell migration during myogenesis, Journal of Cell Science, vol.123, issue.18, pp.3052-3060, 2010.
DOI : 10.1242/jcs.066241

B. Bondesen, K. Jones, and W. Glasgow, Inhibition of myoblast migration by prostacyclin is associated with enhanced cell fusion, The FASEB Journal, vol.21, issue.12, pp.3338-3345, 2007.
DOI : 10.1096/fj.06-7070com

S. Abmayr and G. Pavlath, Myoblast fusion: lessons from flies and mice, Development, vol.139, issue.4, pp.641-656, 2012.
DOI : 10.1242/dev.068353

V. Horsley, K. Jansen, and S. Mills, IL-4 Acts as a Myoblast Recruitment Factor during Mammalian Muscle Growth, Cell, vol.113, issue.4, pp.483-494, 2003.
DOI : 10.1016/S0092-8674(03)00319-2

C. Buttner, A. Skupin, and T. Reimann, Local Production of Interleukin-4 During Radiation-induced Pneumonitis and Pulmonary Fibrosis in Rats: Macrophages as a Prominent Source of Interleukin-4, American Journal of Respiratory Cell and Molecular Biology, vol.17, issue.3, pp.315-325, 1997.
DOI : 10.1165/ajrcmb.17.3.2279

P. Pouliot, V. Turmel, and E. Gelinas, Interleukin-4 production by human alveolar macrophages, Clinical <html_ent glyph="@amp;" ascii="&"/> Experimental Allergy, vol.169, issue.6, pp.804-810, 2005.
DOI : 10.1016/j.jim.2004.02.002

M. Hara, S. Yuasa, and K. Shimoji, G-CSF influences mouse skeletal muscle development and regeneration by stimulating myoblast proliferation, The Journal of Experimental Medicine, vol.122, issue.4, pp.715-727, 2011.
DOI : 10.1016/j.stem.2009.02.013

T. Leizer, J. Cebon, and J. Layton, Cytokine regulation of colony-stimulating factor production in cultured human synovial fibroblasts: I. Induction of GM-CSF and G-CSF production by interleukin-1 and tumor necrosis factor, BLOOD, vol.76, pp.1989-1996, 1990.

J. Hamilton, Colony-stimulating factors in inflammation and autoimmunity, Nature Reviews Immunology, vol.39, issue.7, pp.533-544, 2008.
DOI : 10.1038/nri2356

H. Lu, D. Huang, and N. Saederup, Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury, The FASEB Journal, vol.25, issue.1, pp.358-369, 2010.
DOI : 10.1096/fj.10-171579

X. Wang, H. Wu, and Z. Zhang, Effects of Interleukin-6, Leukemia Inhibitory Factor, and Ciliary Neurotrophic Factor on the Proliferation and Differentiation of Adult Human Myoblasts, Cellular and Molecular Neurobiology, vol.119, issue.1, pp.113-124, 2008.
DOI : 10.1007/s10571-007-9247-9

A. Serrano, B. Baeza-raja, and E. Perdiguero, Interleukin-6 Is an Essential Regulator of Satellite Cell-Mediated Skeletal Muscle Hypertrophy, Cell Metabolism, vol.7, issue.1, pp.33-44, 2008.
DOI : 10.1016/j.cmet.2007.11.011

G. Luo, D. Hershko, and B. Robb, IL-1beta stimulates IL-6 production in cultured skeletal muscle cells through activation of MAP kinase signaling pathway and NF-kappa B

R. Langen, A. Schols, and M. Kelders, Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-kappaB, The FASEB Journal, vol.15, issue.7, pp.1169-1180, 2001.
DOI : 10.1096/fj.00-0463

S. Broussard, R. Mccusker, and J. Novakofski, IL-1?? Impairs Insulin-Like Growth Factor I-Induced Differentiation and Downstream Activation Signals of the Insulin-Like Growth Factor I Receptor in Myoblasts, The Journal of Immunology, vol.172, issue.12, pp.7713-7720, 2004.
DOI : 10.4049/jimmunol.172.12.7713

C. Christov, F. Chretien, and R. Abou-khalil, Muscle Satellite Cells and Endothelial Cells: Close Neighbors and Privileged Partners, Molecular Biology of the Cell, vol.18, issue.4, pp.1397-1409, 2007.
DOI : 10.1091/mbc.E06-08-0693

URL : https://hal.archives-ouvertes.fr/inserm-00128985

B. Bryan, T. Walshe, and D. Mitchell, Coordinated Vascular Endothelial Growth Factor Expression and Signaling During Skeletal Myogenic Differentiation, Molecular Biology of the Cell, vol.19, issue.3, pp.994-1006, 2007.
DOI : 10.1091/mbc.E07-09-0856

N. Arsic, S. Zacchigna, and L. Zentilin, Vascular endothelial growth factor stimulates skeletal muscle regeneration in Vivo, Molecular Therapy, vol.10, issue.5, pp.844-854, 2004.
DOI : 10.1016/j.ymthe.2004.08.007

V. Jacquemin, G. Butler-browne, and D. Furling, IL-13 mediates the recruitment of reserve cells for fusion during IGF-1-induced hypertrophy of human myotubes, Journal of Cell Science, vol.120, issue.4, pp.670-681, 2007.
DOI : 10.1242/jcs.03371

A. Gentile, G. Toietta, and V. Pazzano, Human epicardium-derived cells fuse with high efficiency with skeletal myotubes and differentiate toward the skeletal muscle phenotype: a comparison study with stromal and endothelial cells, Molecular Biology of the Cell, vol.22, issue.5, pp.581-592, 2011.
DOI : 10.1091/mbc.E10-06-0537

E. Olson, E. Sternberg, and J. Hu, Regulation of myogenic differentiation by type beta transforming growth factor, The Journal of Cell Biology, vol.103, issue.5, pp.1799-1805, 1986.
DOI : 10.1083/jcb.103.5.1799

D. Liu, J. Kang, and R. Derynck, TGF-??-activated Smad3 represses MEF2-dependent transcription in myogenic differentiation, The EMBO Journal, vol.23, issue.7, pp.1557-1566, 2004.
DOI : 10.1038/sj.emboj.7600179

M. Murakami, M. Ohkuma, and M. Nakamura, Molecular mechanism of transforming growth factor-??-mediated inhibition of growth arrest and differentiation in a myoblast cell line, Development, Growth & Differentiation, vol.282, issue.2, pp.121-130, 2008.
DOI : 10.1111/j.1440-169X.2007.00982.x

A. Zentella and J. Massague, Transforming growth factor beta induces myoblast differentiation in the presence of mitogens., Proceedings of the National Academy of Sciences, vol.89, issue.11, pp.5176-5180, 1992.
DOI : 10.1073/pnas.89.11.5176

M. Stables, S. Shah, and E. Camon, Transcriptomic analyses of murine resolution-phase macrophages, Blood, vol.118, issue.26, pp.192-208, 2011.
DOI : 10.1182/blood-2011-04-345330

P. Clarkson, Exercise-induced muscle damage???animal and human models, Medicine & Science in Sports & Exercise, vol.24, issue.5, pp.510-511, 1992.
DOI : 10.1249/00005768-199205000-00003

F. Lauritzen, G. Paulsen, and T. Raastad, Gross ultrastructural changes and necrotic fiber segments in elbow flexor muscles after maximal voluntary eccentric action in humans, Journal of Applied Physiology, vol.107, issue.6, pp.1923-1934, 2009.
DOI : 10.1152/japplphysiol.00148.2009

J. Round, D. Jones, and G. Cambridge, Cellular infiltrates in human skeletal muscle: Exercise induced damage as a model for inflammatory muscle disease?, Journal of the Neurological Sciences, vol.82, issue.1-3, pp.1-11, 1987.
DOI : 10.1016/0022-510X(87)90002-5

J. Yu, C. Malm, and L. Thornell, Eccentric contractions leading to DOMS do not cause loss of desmin nor fibre necrosis in human muscle, HISTOCHEM CELL BIOL, vol.118, pp.29-34, 2002.

J. Otis, T. Burkholder, and G. Pavlath, Stretch-induced myoblast proliferation is dependent on the COX2 pathway, Experimental Cell Research, vol.310, issue.2, pp.417-425, 2005.
DOI : 10.1016/j.yexcr.2005.08.009

P. Kaliman, J. Canicio, and X. Testar, Insulin-like Growth Factor-II, Phosphatidylinositol 3-Kinase, Nuclear Factor-??B and Inducible Nitric-oxide Synthase Define a Common Myogenic Signaling Pathway, Journal of Biological Chemistry, vol.274, issue.25, pp.17437-17444, 1999.
DOI : 10.1074/jbc.274.25.17437

R. Chang, L. Chicoine, and H. Cui, Cytokine-induced arginase activity in pulmonary endothelial cells is dependent on Src family tyrosine kinase activity, AJP: Lung Cellular and Molecular Physiology, vol.295, issue.4, pp.688-697, 2008.
DOI : 10.1152/ajplung.00504.2007

C. Buechler, M. Ritter, and E. Orso, Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro-and antiinflammatory stimuli, J LEUKOC BIOL, vol.67, pp.97-103, 2000.

F. Porcheray, S. Viaud, and A. Rimaniol, Macrophage activation switching: an asset for the resolution of inflammation, Clinical and Experimental Immunology, vol.72, issue.0, pp.481-489, 2005.
DOI : 10.1159/000028079

E. Perdiguero, P. Sousa-victor, and V. Ruiz-bonilla, MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair, J CELL BIOL, vol.38195, pp.307-322, 2011.