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various aspects of synaptic plasticity.  The most extensively studied forms of both 

LTP and LTD are triggered by the synaptic activation of the NMDA receptor  

(Collingridge et al., 1983; Dudek et al., 1992; Mulkey et al., 1992). However, there 

are also NMDAR-independent forms of both LTP and LTD.  For example, LTP at 

mossy fibre synapses that connect dentate granule cells to CA3 neurons involves 

activation of kainate receptors (Bortolotto et al., 1999a) rather than NMDARs (Harris 

et al., 1986).  In addition, some forms of LTD require the activation of mGluRs rather 

than NMDARs (Bortolotto et al., 1999b).  In this context it is important to note that 

there are mechanistically two distinct types of long-lasting synaptic depression.  A 

long-lasting depression of baseline transmission, which is commonly referred to as 

LTD (or sometimes as de novo LTD) and a reversal of pre-established LTP, which is 

usually referred to as depotentiation (DP).  Both forms of synaptic plasticity are 

similar in that they are long-lasting depressions of synaptic efficiency but they are 

different in the sense that they depend upon the pre-existing state of synaptic 

efficiency (baseline vs potentiated).  With respect to both LTD and DP there are two 

forms, one which requires the activation of NMDARs (Dudek et al., 1992; Fujii et al., 

1991) and another that requires the activation of mGluRs (Bashir et al., 1993; 

Bolshakov et al., 1994).  Precisely what determines whether NMDAR and mGluR-

dependent forms of long-lasting depression are induced is not fully understood. 

 

All forms of synaptic plasticity are expressed as long term alterations in the efficiency 

of synaptic transmission.  The synaptic response evoked by low frequency synaptic 

stimulation under standard experimental conditions is mediated primarily by the 

activation of AMPARs (Andreasen et al., 1989; Davies et al., 1989).  Therefore, in 

most studies of synaptic plasticity it is alterations in the efficiency of AMPAR-
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