S. Catalog and . Culicidae, http://www.mosquitocatalog.org/default.aspx 3. Harbach RE: The classification of genus Anopheles (Diptera: Culicidae): a working hypothesis of phylogenetic relationships, Bull Entomol Res, issue.6, pp.94537-553, 2004.

A. Kiszewski, A. Mellinger, A. Spielman, P. Malaney, S. Sachs et al., A global index representing the stability of malaria transmission, Am J Trop Med Hyg, vol.70, issue.5, pp.486-498, 2004.

L. Kelly-hope, J. Hemingway, and F. Mckenzie, Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya, Malaria Journal, vol.8, issue.1, p.268, 2009.
DOI : 10.1186/1475-2875-8-268

M. Rowland, N. Mohammed, H. Rehman, S. Hewitt, C. Mendis et al., Anopheline vectors and malaria transmission in eastern Afghanistan, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.96, issue.6, pp.96620-626, 2002.
DOI : 10.1016/S0035-9203(02)90331-7

A. Hati, Urban malaria vector biology, Indian J Med Res, vol.106, pp.149-163, 1997.

L. Gutierrez, N. Naranjo, A. Cienfuegos, C. Muskus, S. Luckhart et al., Population structure analyses and demographic history of the malaria vector Anopheles albimanus from the Caribbean and the Pacific regions of Colombia, Malaria Journal, vol.8, issue.1, p.259, 2009.
DOI : 10.1186/1475-2875-8-259

L. Gutierrez, N. Naranjo, L. Jaramillo, C. Muskus, S. Luckhart et al., Natural infectivity of Anopheles species from the Pacific and Atlantic Regions of Colombia, Acta Tropica, vol.107, issue.2, pp.99-105, 2008.
DOI : 10.1016/j.actatropica.2008.04.019

R. Zimmerman, Ecology of malaria vectors in the Americas and future direction, Mem??rias do Instituto Oswaldo Cruz, vol.87, pp.371-383, 1992.
DOI : 10.1590/S0074-02761992000700064

P. Crompton, S. Pierce, and L. Miller, Advances and challenges in malaria vaccine development, Journal of Clinical Investigation, vol.120, issue.12, pp.4168-4178, 2010.
DOI : 10.1172/JCI44423

C. Rogier, E. Orlandi-pradines, T. Fusai, B. Pradines, S. Briolant et al., Vaccins contre le??paludisme??: perspectives et??r??alit??, M??decine et Maladies Infectieuses, vol.36, issue.8, pp.414-422, 2006.
DOI : 10.1016/j.medmal.2006.05.016

B. Pradines, H. Vial, and P. Olliaro, Malaria prophylaxis and treatment: problems, recent developments and perspectives, Med Trop (Mars), vol.2003, issue.631, pp.79-98

A. Enayati, J. Lines, R. Maharaj, J. Hemingway, R. Feachem et al., In Shrinking the Malaria Map: A Prospectus on Malaria Elimination Suppressing the Vector, pp.140-154, 2009.

A. Shaukat, J. Breman, and F. Mckenzie, Using the entomological inoculation rate to assess the impact of vector control on malaria parasite transmission and elimination, Malaria Journal, vol.9, issue.1, p.122, 2010.
DOI : 10.1186/1475-2875-9-122

E. Mathenge, G. Misiani, D. Oulo, L. Irungu, P. Ndegwa et al., Comparative performance of the Mbita trap, CDC light trap and the human landing catch in the sampling of Anopheles arabiensis, An. funestus and culicine species in a rice irrigation in western Kenya, Malaria Journal, vol.4, issue.1, p.7, 2005.
DOI : 10.1186/1475-2875-4-7

L. Mboera, Sampling techniques for adult Afrotropical malaria vectors and their reliability in the estimation of entomological inoculation rate, Tanzania Journal of Health Research, vol.7, issue.3, pp.117-124, 2005.
DOI : 10.4314/thrb.v7i3.14248

D. Smith, T. Smith, S. Hay, R. Feachem, A. Phillips et al., In Shrinking the Malaria map: A prospectus on Malaria Elimination, 2009.

C. Garrett-jones and G. Shidrawi, Malaria vectorial capacity of a population of Anopheles gambiae: an exercise in epidemiological entomology, Bull World Health Organ, vol.40, issue.4, pp.531-545, 1969.

C. Mbogo, J. Mwangangi, J. Nzovu, W. Gu, G. Yan et al., Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast, Am J Trop Med Hyg, issue.6, pp.68734-742, 2003.

E. Orlandi-pradines, C. Rogier, B. Koffi, F. Jarjaval, M. Bell et al., Major variations in malaria exposure of travellers in rural areas: an entomological cohort study in western C??te d'Ivoire, Malaria Journal, vol.8, issue.1, p.171, 2009.
DOI : 10.1186/1475-2875-8-171

J. Ribeiro, Blood-feeding arthropods: live syringes or invertebrate pharmacologists?, Infect Agents Dis, vol.4, issue.3, pp.143-152, 1995.

J. Ribeiro and I. Francischetti, : Sialome and Post-Sialome Perspectives, Annual Review of Entomology, vol.48, issue.1, pp.73-88, 2003.
DOI : 10.1146/annurev.ento.48.060402.102812

S. Cornelie, F. Remoue, S. Doucoure, T. Ndiaye, F. Sauvage et al., An insight into immunogenic salivary proteins of Anopheles gambiae in African children, Malaria Journal, vol.6, issue.1, p.75, 2007.
DOI : 10.1186/1475-2875-6-75

URL : https://hal.archives-ouvertes.fr/ird-00156556

F. Remoue, A. E. Cornelie, S. Sokhna, C. Cisse, B. Doucoure et al., IgE and IgG4 antibody responses to Aedes saliva in African children, Acta Tropica, vol.104, issue.2-3, pp.2-3108, 2007.
DOI : 10.1016/j.actatropica.2007.07.011

F. Remoue, B. Cisse, F. Ba, C. Sokhna, J. Herve et al., Evaluation of the antibody response to Anopheles salivary antigens as a potential marker of risk of malaria, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.100, issue.4, pp.363-370, 2006.
DOI : 10.1016/j.trstmh.2005.06.032

B. Londono-renteria, T. Eisele, J. Keating, M. James, and D. Wesson, Antibody Response Against Anopheles albimanus (Diptera: Culicidae) Salivary Protein as a Measure of Mosquito Bite Exposure in Haiti, Journal of Medical Entomology, vol.47, issue.6, pp.471156-1163, 2010.
DOI : 10.1603/ME09240

E. Orlandi-pradines, L. Almeras, D. De-senneville, L. Barbe, S. Remoue et al., Antibody response against saliva antigens of Anopheles gambiae and Aedes aegypti in travellers in tropical Africa, Microbes and Infection, vol.9, issue.12-13, pp.12-131454, 2007.
DOI : 10.1016/j.micinf.2007.07.012

K. Palosuo, H. Brummer-korvenkontio, J. Mikkola, T. Sahi, and T. Reunala, Seasonal Increase in Human IgE and lgG4 Antisaliva Antibodies to Aedes Mosquito Bites, International Archives of Allergy and Immunology, vol.114, issue.4, pp.367-372, 1997.
DOI : 10.1159/000237696

A. Fontaine, I. Diouf, N. Bakkali, D. Misse, F. Pages et al., Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasit Vectors, p.187, 2011.

P. Drame, A. Poinsignon, P. Besnard, L. Mire, J. Dos-santos et al., Human Antibody Response to Anopheles gambiae Saliva: An Immuno-Epidemiological Biomarker to Evaluate the Efficacy of Insecticide-Treated Nets in Malaria Vector Control, American Journal of Tropical Medicine and Hygiene, vol.83, issue.1, pp.115-121, 2010.
DOI : 10.4269/ajtmh.2010.09-0684

Z. Peng, W. Xu, H. Lam, L. Cheng, A. James et al., A new recombinant mosquito salivary allergen, rAed a 2: allergenicity, clinical relevance, and cross-reactivity, Allergy, vol.74, issue.4, pp.61485-490, 2006.
DOI : 10.1159/000024231

C. Wheeler, J. Coleman, and J. Benach, Salivary Gland Antigens of Ixodes dammini Are Glycoproteins That Have Interspecies Cross-Reactivity, The Journal of Parasitology, vol.77, issue.6
DOI : 10.2307/3282751

H. Brummer-korvenkontio, T. Palosuo, G. Francois, and T. Reunala, Characterization of <i>Aedes communis</i>, <i>Aedes aegypti</i> and <i>Anopheles stephens</i><i>i</i> Mosquito Saliva Antigens by Immunoblotting, International Archives of Allergy and Immunology, vol.112, issue.2, pp.169-174, 1997.
DOI : 10.1159/000237450

M. Cross, M. Cupp, E. Cupp, F. Ramberg, and F. Enriquez, Antibody Responses of BALB/c Mice to Salivary Antigens of Hematophagous Black Flies (Diptera: Simuliidae), Journal of Medical Entomology, vol.30, issue.4, pp.725-734, 1993.
DOI : 10.1093/jmedent/30.4.725

C. Rizzo, R. Ronca, G. Fiorentino, V. Mangano, S. Sirima et al., Wide cross-reactivity between Anopheles gambiae and Anopheles funestus SG6 salivary proteins supports exploitation of gSG6 as a marker of human exposure to major malaria vectors in tropical Africa, Malaria Journal, vol.10, issue.1, p.206, 2011.
DOI : 10.1186/1475-2875-7-195

Z. Peng, H. Li, and F. Simons, Immunoblot analysis of salivary allergens in 10 mosquito species with worldwide distribution and the human IgE responses to these allergens, Journal of Allergy and Clinical Immunology, vol.101, issue.4, pp.498-505, 1998.
DOI : 10.1016/S0091-6749(98)70357-4

N. Marshall, M. Chapman, and A. Saxon, Species-specific allergens from the salivary glands of Triatominae (Heteroptera: Reduviidae), Journal of Allergy and Clinical Immunology, vol.78, issue.3, pp.430-435, 1986.
DOI : 10.1016/0091-6749(86)90029-1

P. Volf and I. Rohousova, Species-specific antigens in salivary glands of phlebotomine sandflies, Parasitology, vol.122, issue.1, pp.37-41, 2001.
DOI : 10.1017/S0031182000007046

S. Jeon, J. Park, and B. Lee, Characterization of Human IgE and Mouse IgG1 Responses to Allergens in Three Mosquito Species by Immunoblotting and ELISA, International Archives of Allergy and Immunology, vol.126, issue.3, pp.206-212, 2001.
DOI : 10.1159/000049515

R. Aalberse, J. Akkerdaas, and R. Van-ree, Cross-reactivity of IgE antibodies to allergens, Allergy, vol.107, issue.6, pp.478-490, 2001.
DOI : 10.1016/S0161-5890(00)00029-8

R. Holt, G. Subramanian, A. Halpern, G. Sutton, R. Charlab et al., The Genome Sequence of the Malaria Mosquito Anopheles gambiae, Science, vol.298, issue.5591, pp.298129-149, 2002.
DOI : 10.1126/science.1076181

V. Nene, J. Wortman, D. Lawson, B. Haas, C. Kodira et al., Genome Sequence of Aedes aegypti, a Major Arbovirus Vector, Science, vol.316, issue.5832, pp.3161718-1723, 2007.
DOI : 10.1126/science.1138878

URL : https://hal.archives-ouvertes.fr/hal-00156214

B. Arca, F. Lombardo, I. Francischetti, V. Pham, M. Mestres-simon et al., An insight into the sialome of the adult female mosquito Aedes albopictus, Insect Biochemistry and Molecular Biology, vol.37, issue.2, pp.107-127, 2007.
DOI : 10.1016/j.ibmb.2006.10.007

B. Arca, F. Lombardo, J. Valenzuela, I. Francischetti, O. Marinotti et al., An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae, Journal of Experimental Biology, vol.208, issue.20, pp.3971-3986, 2005.
DOI : 10.1242/jeb.01849

E. Calvo, J. Andersen, I. Francischetti, L. De, A. Debianchi et al., The transcriptome of adult female Anopheles darlingi salivary glands, Insect Molecular Biology, vol.205, issue.1, pp.73-88, 2004.
DOI : 10.1046/j.1365-2583.2002.00360.x

E. Calvo, V. Pham, O. Marinotti, J. Andersen, and J. Ribeiro, The salivary gland transcriptome of the neotropical malaria vector Anopheles darlingi reveals accelerated evolution of genes relevant to hematophagy, BMC Genomics, vol.10, issue.1, p.57, 2009.
DOI : 10.1186/1471-2164-10-57

E. Calvo, I. Sanchez-vargas, A. Favreau, K. Barbian, V. Pham et al., An insight into the sialotranscriptome of the West Nile mosquito vector, Culex tarsalis, BMC Genomics, vol.11, issue.1, p.51, 2010.
DOI : 10.1186/1471-2164-11-51

J. Ribeiro, R. Charlab, V. Pham, M. Garfield, and J. Valenzuela, An insight into the salivary transcriptome and proteome of the adult female mosquito Culex pipiens quinquefasciatus, Insect Biochemistry and Molecular Biology, vol.34, issue.6, pp.543-563, 2004.
DOI : 10.1016/j.ibmb.2004.02.008

J. Valenzuela, I. Francischetti, V. Pham, M. Garfield, and J. Ribeiro, Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito, Insect Biochemistry and Molecular Biology, vol.33, issue.7, pp.717-732, 2003.
DOI : 10.1016/S0965-1748(03)00067-5

J. Ribeiro, B. Arca, F. Lombardo, E. Calvo, V. Phan et al., An annotated catalogue of salivary gland transcripts in the adult female mosquito. Aedes aegypti, BMC Genomics, vol.8, issue.1, p.6, 2007.
DOI : 10.1186/1471-2164-8-6

L. Almeras, A. Fontaine, M. Belghazi, S. Bourdon, E. Boucomont-chapeaublanc et al., Mosquitoes, Vector-Borne and Zoonotic Diseases, vol.10, issue.4, pp.391-402, 2010.
DOI : 10.1089/vbz.2009.0042

URL : https://hal.archives-ouvertes.fr/pasteur-00516657

J. Ribeiro, B. Mans, and B. Arcà, An insight into the sialome of blood-feeding Nematocera, Insect Biochemistry and Molecular Biology, vol.40, issue.11, pp.767-784, 2010.
DOI : 10.1016/j.ibmb.2010.08.002

E. Calvo, V. Pham, F. Lombardo, B. Arca, and J. Ribeiro, The sialotranscriptome of adult male Anopheles gambiae mosquitoes, Insect Biochemistry and Molecular Biology, vol.36, issue.7, pp.570-575, 2006.
DOI : 10.1016/j.ibmb.2006.04.005

E. Calvo, A. Dao, V. Pham, and J. Ribeiro, An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families, Insect Biochemistry and Molecular Biology, vol.37, issue.2, pp.164-175, 2007.
DOI : 10.1016/j.ibmb.2006.11.005

J. Martinez-barnetche, R. Gomez-barreto, M. Ovilla-munoz, J. Tellez-sosa, D. Garcia-lopez et al., Transcriptome of the adult female malaria mosquito vector Anopheles albimanus, BMC Genomics, vol.13, issue.1, p.207
DOI : 10.1186/1471-2105-8-333

URL : https://hal.archives-ouvertes.fr/pasteur-00732286

B. Arca, F. Lombardo, D. Lara-capurro, M. , D. Torre et al., Trapping cDNAs encoding secreted proteins from the salivary glands of the malaria vector Anopheles gambiae, Proceedings of the National Academy of Sciences, vol.96, issue.4, pp.1516-1521, 1999.
DOI : 10.1073/pnas.96.4.1516

A. Mohanty, S. Swain, S. Kar, and R. Hazra, Analysis of the phylogenetic relationship of Anopheles species, subgenus Cellia (Diptera: Culicidae) and using it to define the relationship of morphologically similar species, Infection, Genetics and Evolution, vol.9, issue.6, pp.1204-1224, 2009.
DOI : 10.1016/j.meegid.2009.06.021

D. Foley, J. Bryan, D. Yeates, and A. Saul, Evolution and Systematics ofAnopheles:Insights from a Molecular Phylogeny of Australasian Mosquitoes, Molecular Phylogenetics and Evolution, vol.9, issue.2, pp.262-275, 1998.
DOI : 10.1006/mpev.1997.0457

K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei et al., MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, Molecular Biology and Evolution, vol.28, issue.10, pp.282731-2739, 2011.
DOI : 10.1093/molbev/msr121

T. Tatusova and T. Madden, BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences, FEMS Microbiology Letters, vol.174, issue.2, pp.247-250, 1999.
DOI : 10.1111/j.1574-6968.1999.tb13575.x

J. Bendtsen, H. Nielsen, G. Von-heijne, and S. Brunak, Improved Prediction of Signal Peptides: SignalP 3.0, Journal of Molecular Biology, vol.340, issue.4, pp.783-795, 2004.
DOI : 10.1016/j.jmb.2004.05.028

H. Nielsen, J. Engelbrecht, S. Brunak, and G. Von-heijne, A Neural Network Method for Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of their Cleavage Sites, International Journal of Neural Systems, vol.08, issue.05n06, pp.5-6581, 1997.
DOI : 10.1142/S0129065797000537

A. Serazin, A. Dana, M. Hillenmeyer, N. Lobo, M. Coulibaly et al., Comparative Analysis of the Global Transcriptome of Anopheles funestus from Mali, West Africa, PLoS ONE, vol.4, issue.11, p.7976, 2009.
DOI : 10.1371/journal.pone.0007976.s002

D. Rasko, G. Myers, and J. Ravel, Visualization of comparative genomic analyses by BLAST score ratio, BMC Bioinformatics, vol.6, issue.2, 2005.

Y. Huang, B. Niu, Y. Gao, L. Fu, and W. Li, CD-HIT Suite: a web server for clustering and comparing biological sequences, Bioinformatics, vol.26, issue.5, pp.680-682, 2010.
DOI : 10.1093/bioinformatics/btq003

W. Li, J. Wooley, and A. Godzik, Probing Metagenomics by Rapid Cluster Analysis of Very Large Datasets, PLoS ONE, vol.234, issue.10, p.3375, 2008.
DOI : 10.1371/journal.pone.0003375.g007

L. Almeras, E. Orlandi-pradines, A. Fontaine, C. Villard, E. Boucomont et al., Colonies, Vector-Borne and Zoonotic Diseases, vol.9, issue.5, pp.531-541, 2009.
DOI : 10.1089/vbz.2008.0056

D. Fontenille, L. Lochouarn, N. Diagne, C. Sokhna, J. Lemasson et al., High annual and seasonal variations in malaria transmission by anophelines and vector species composition in Dielmo, a holoendemic area in Senegal, Am J Trop Med Hyg, vol.56, issue.3, pp.247-253, 1997.

A. Waitayakul, S. Somsri, J. Sattabongkot, S. Looareesuwan, L. Cui et al., Natural human humoral response to salivary gland proteins of Anopheles mosquitoes in Thailand, Acta Tropica, vol.98, issue.1, pp.66-73, 2006.
DOI : 10.1016/j.actatropica.2006.02.004

T. Watson and B. Kay, (Diptera: Culicidae) for Dengue 1???4 Viruses in Queensland, Australia, Journal of Medical Entomology, vol.36, issue.4, pp.508-514, 1999.
DOI : 10.1093/jmedent/36.4.508

T. Aitken, An in vitro feeding technique for artificially demonstrating virus transmission by mosquitoes, Mosq News, vol.37, pp.130-133, 1977.

J. Anderson, F. Oliveira, S. Kamhawi, B. Mans, D. Reynoso et al., Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis, BMC Genomics, vol.7, issue.1, p.52, 2006.
DOI : 10.1186/1471-2164-7-52

J. Ribeiro and B. Arca, Chapter 2 From Sialomes to the Sialoverse, Adv Insect Physiol, vol.37, pp.59-118, 2009.
DOI : 10.1016/S0065-2806(09)37002-2

I. Francischetti, A. Sa-nunes, B. Mans, I. Santos, and J. Ribeiro, The role of saliva in tick feeding, Frontiers in Bioscience, vol.Volume, issue.14, pp.2051-2088, 2009.
DOI : 10.2741/3363

R. Aalberse, Structural biology of allergens, Journal of Allergy and Clinical Immunology, vol.106, issue.2, pp.228-238, 2000.
DOI : 10.1067/mai.2000.108434

S. Jacquenet and D. Moneret-vautrin, Allergy to peanut and all kinds of nuts. Revue française d'allergologie et d'immunologie clinique, pp.487-491, 2007.

Z. Peng, W. Xu, A. James, H. Lam, D. Sun et al., Expression, purification, characterization and clinical relevance of rAed a 1--a 68-kDa recombinant mosquito Aedes aegypti salivary allergen, International Immunology, vol.13, issue.12, pp.131445-1452, 2001.
DOI : 10.1093/intimm/13.12.1445

R. Cooper, M. Edstein, S. Frances, and N. Beebe, Malaria vectors of Timor-Leste, Malaria Journal, vol.9, issue.1, p.40, 2010.
DOI : 10.1186/1475-2875-9-40

C. Garros, C. Van-nguyen, H. Trung, V. Bortel, W. Coosemans et al., Distribution of Anopheles in Vietnam, with particular attention to malaria vectors of the Anopheles minimus complex, Malaria Journal, vol.7, issue.1, p.11, 2008.
DOI : 10.1186/1475-2875-7-11

C. Rizzo, R. Ronca, G. Fiorentino, F. Verra, V. Mangano et al., Humoral Response to the Anopheles gambiae Salivary Protein gSG6: A Serological Indicator of Exposure to Afrotropical Malaria Vectors, PLoS ONE, vol.107, issue.3, p.17980, 2011.
DOI : 10.1371/journal.pone.0017980.s002

A. Poinsignon, S. Cornelie, F. Ba, D. Boulanger, C. Sow et al., Human IgG response to a salivary peptide, gSG6-P1, as a new immuno-epidemiological tool for evaluating low-level exposure to Anopheles bites, Malaria Journal, vol.8, issue.1, p.198, 2009.
DOI : 10.1186/1475-2875-8-198

A. Poinsignon, S. Cornelie, M. Mestres-simon, A. Lanfrancotti, M. Rossignol et al., Novel Peptide Marker Corresponding to Salivary Protein gSG6 Potentially Identifies Exposure to Anopheles Bites, PLoS ONE, vol.3, issue.1102, p.2472, 2008.
DOI : 10.1371/journal.pone.0002472.g004

A. Poinsignon, B. Samb, S. Doucoure, P. Drame, J. Sarr et al., First attempt to validate the gSG6-P1 salivary peptide as an immuno-epidemiological tool for evaluating human exposure to Anopheles funestus bites, Tropical Medicine & International Health, vol.98, issue.10, pp.151198-1203, 2010.
DOI : 10.1111/j.1365-3156.2010.02611.x

D. Kalume, M. Okulate, J. Zhong, R. Reddy, S. Suresh et al., A proteomic analysis of salivary glands of femaleAnopheles gambiae mosquito, PROTEOMICS, vol.8, issue.14, pp.3765-3777, 2005.
DOI : 10.1002/pmic.200401210

L. Wu and D. Han, Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics, Expert Review of Proteomics, vol.3, issue.6, pp.611-619, 2006.
DOI : 10.1586/14789450.3.6.611

J. Scott, W. Brogdon, and F. Collins, Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction

M. Bonizzoni, Y. Afrane, and G. Yan, Loop-Mediated Isothermal Amplification (LAMP) for Rapid Identification of Anopheles gambiae and Anopheles arabiensis Mosquitoes, American Journal of Tropical Medicine and Hygiene, vol.81, issue.6, pp.1030-1034, 2009.
DOI : 10.4269/ajtmh.2009.09-0333

M. Coetzee, M. Craig, and D. Le-sueur, Distribution of African Malaria Mosquitoes Belonging to the Anopheles gambiae Complex, Parasitology Today, vol.16, issue.2, pp.74-77, 2000.
DOI : 10.1016/S0169-4758(99)01563-X

A. Fontaine, A. Pascual, E. Orlandi-pradines, I. Diouf, F. Remoue et al., Relationship between Exposure to Vector Bites and Antibody Responses to Mosquito Salivary Gland Extracts, PLoS ONE, vol.8, issue.12, p.29107, 2011.
DOI : 10.1371/journal.pone.0029107.s002

D. Fontenille, A. Cohuet, P. Awono-ambene, P. Kengne, C. Antonio-nkondjio et al., Vecteurs de paludisme : du terrain ?? la g??n??tique mol??culaire Recherches en Afrique, Revue d'??pid??miologie et de Sant?? Publique, vol.53, issue.3, pp.283-290, 2005.
DOI : 10.1016/S0398-7620(05)84605-X

E. Ambrosino, C. Dumoulin, E. Orlandi-pradines, F. Remoue, A. Toure-balde et al., A multiplex assay for the simultaneous detection of antibodies against 15 Plasmodium falciparum and Anopheles gambiae saliva antigens, Malaria Journal, vol.9, issue.1, p.317, 2010.
DOI : 10.1186/1475-2875-9-317

A. Souza, B. Andrade, D. Aquino, P. Entringer, J. Miranda et al., Using Recombinant Proteins from Lutzomyia longipalpis Saliva to Estimate Human Vector Exposure in Visceral Leishmaniasis Endemic Areas, PLoS Neglected Tropical Diseases, vol.32, issue.1, p.649, 2010.
DOI : 10.1371/journal.pntd.0000649.s002

A. Fontaine, M. Pophillat, S. Bourdon, C. Villard, M. Belghazi et al., Specific antibody responses against membrane proteins of erythrocytes infected by Plasmodium falciparum of individuals briefly exposed to malaria, Malaria Journal, vol.9, issue.1, p.276, 2010.
DOI : 10.1186/1475-2875-9-276

URL : https://hal.archives-ouvertes.fr/inserm-00617224

J. Thompson, D. Higgins, and T. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.224673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

N. Saitou and M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol Biol Evol, vol.4, issue.4, pp.406-425, 1987.

J. Felsenstein, Confidence Limits on Phylogenies: An Approach Using the Bootstrap, Evolution, vol.39, issue.4, pp.783-791, 1985.
DOI : 10.2307/2408678

V. Machault, L. Gadiaga, C. Vignolles, F. Jarjaval, S. Bouzid et al., Highly focused anopheline breeding sites and malaria transmission in Dakar, Malaria Journal, vol.8, issue.1, p.138, 2009.
DOI : 10.1186/1475-2875-8-138

D. Fontenille, L. Lochouarn, M. Diatta, C. Sokhna, I. Dia et al., Four years' entomological study of the transmission of seasonal malaria in Senegal and the bionomics of Anopheles gambiae and A. arabiensis, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.91, issue.6, pp.91647-652, 1997.
DOI : 10.1016/S0035-9203(97)90506-X

A. Fontaine, A. Pascual, I. Diouf, N. Bakkali, S. Bourdon et al., Almeras L: Mosquito salivary gland protein preservation in the field for immunological and biochemical analysis. Parasit Vectors, p.33, 2011.

D. Moneret-vautrin, Allergic risk and role of the allergy vigilance network, Bull Acad Natl Med, vol.191, issue.45, pp.807-814, 2007.

R. Davey, B. Lenes, A. Casper, and D. Demets, Adequate survival of red cells from units ???undercollected??? in citrate- phosphate-dextrose-adenine-one, Transfusion, vol.24, issue.4, pp.319-322, 1984.
DOI : 10.1046/j.1537-2995.1984.24484275572.x

. Fontaine, Anopheles salivary gland proteomes from major malaria vectors, BMC Genomics, vol.13, issue.1, p.614, 2012.
DOI : 10.1046/j.1537-2995.1984.24484275572.x

URL : https://hal.archives-ouvertes.fr/inserm-00772652