I. Blasig, L. Winkler, B. Lassowski, S. Mueller, N. Zuleger et al., On the self-association potential of transmembrane tight junction proteins, Cellular and Molecular Life Sciences, vol.63, issue.4, pp.505-514, 2006.
DOI : 10.1007/s00018-005-5472-x

J. Walter, V. Castro, M. Voss, K. Gast, C. Rueckert et al., Redox-sensitivity of the dimerization of occludin, Cellular and Molecular Life Sciences, vol.32, issue.22, pp.3655-3662, 2009.
DOI : 10.1007/s00018-009-0150-z

J. Walter, C. Rueckert, M. Voss, S. Mueller, J. Piontek et al., The oligomerization of the coiled coil-domain of occludin is redox sensitive

J. Lochhead, G. Mccaffrey, C. Quigley, J. Finch, K. Demarco et al., Oxidative Stress Increases Blood???Brain Barrier Permeability and Induces Alterations in Occludin during Hypoxia???Reoxygenation, Journal of Cerebral Blood Flow & Metabolism, vol.272, issue.9, pp.1625-1636, 2010.
DOI : 10.1038/jcbfm.2008.10

J. Lochhead, G. Mccaffrey, L. Sanchez-covarrubias, J. Finch, K. Demarco et al., Tempol modulates changes in xenobiotic permeability and occludin oligomeric assemblies at the blood-brain barrier during inflammatory pain, AJP: Heart and Circulatory Physiology, vol.302, issue.3, pp.582-593, 2012.
DOI : 10.1152/ajpheart.00889.2011

G. Mccaffrey, M. Seelbach, W. Staatz, N. Nametz, C. Quigley et al., Occludin oligomeric assembly at tight junctions of the blood-brain barrier is disrupted by peripheral inflammatory hyperalgesia, Journal of Neurochemistry, vol.57, issue.9, pp.2395-2409, 2008.
DOI : 10.1111/j.1471-4159.2008.05582.x

I. Blasig, C. Bellmann, J. Cording, D. Vecchio, G. Zwanziger et al., Occludin Protein Family: Oxidative Stress and Reducing Conditions, Antioxidants & Redox Signaling, vol.15, issue.5, pp.1195-1219, 2011.
DOI : 10.1089/ars.2010.3542

R. Medina, C. Rahner, L. Mitic, and J. Anderson, Occludin Localization at the Tight Junction Requires the Second Extracellular Loop, Journal of Membrane Biology, vol.178, issue.3, pp.235-247, 2000.
DOI : 10.1007/s002320010031

V. Wong and B. Gumbiner, A Synthetic Peptide Corresponding to the Extracellular Domain of Occludin Perturbs the Tight Junction Permeability Barrier, The Journal of Cell Biology, vol.107, issue.2, pp.399-409, 1997.
DOI : 10.1006/excr.1994.1299

S. Tavelin, K. Hashimoto, J. Malkinson, L. Lazorova, I. Toth et al., A New Principle for Tight Junction Modulation Based on Occludin Peptides, Molecular Pharmacology, vol.64, issue.6, pp.1530-1540, 2003.
DOI : 10.1124/mol.64.6.1530

R. Everett, M. Vanhook, N. Barozzi, I. Toth, and L. Johnson, Specific Modulation of Airway Epithelial Tight Junctions by Apical Application of an Occludin Peptide, Molecular Pharmacology, vol.69, issue.2, pp.492-500, 2006.
DOI : 10.1124/mol.105.017251

M. Furuse, K. Fujimoto, N. Sato, T. Hirase, and S. Tsukita, Overexpression of occludin, a tight junction-associated integral membrane protein, induces the formation of intracellular multilamellar bodies bearing tight junction-like structures, J Cell Sci, vol.109, issue.2, pp.429-435, 1996.

K. Mccarthy, I. Skare, M. Stankewich, M. Furuse, S. Tsukita et al., Occludin is a functional component of the tight junction, J Cell Sci, vol.109, pp.2287-2298, 1996.

A. Schubert-unkmeir, C. Konrad, H. Slanina, F. Czapek, S. Hebling et al., Neisseria meningitidis Induces Brain Microvascular Endothelial Cell Detachment from the Matrix and Cleavage of Occludin: A Role for MMP-8, PLoS Pathogens, vol.227, issue.5
DOI : 10.1371/journal.ppat.1000874.s006

R. Xu, X. Feng, X. Xie, J. Zhang, D. Wu et al., HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9, Brain Research, vol.1436, pp.13-19, 2012.
DOI : 10.1016/j.brainres.2011.11.052

S. Moroi, M. Saitou, K. Fujimoto, A. Sakakibara, M. Furuse et al., Occludin is concentrated at tight junctions of mouse/rat but not human/ guinea pig Sertoli cells in testes, Am J Physiol, vol.274, pp.1708-1717, 1998.

M. Saitou, K. Fujimoto, Y. Doi, M. Itoh, T. Fujimoto et al., Occludin-deficient Embryonic Stem Cells Can Differentiate into Polarized Epithelial Cells Bearing Tight Junctions, The Journal of Cell Biology, vol.779, issue.2, pp.397-408, 1998.
DOI : 10.1083/jcb.120.2.477

M. Saitou, M. Furuse, H. Sasaki, J. Schulzke, M. Fromm et al., Complex Phenotype of Mice Lacking Occludin, a Component of Tight Junction Strands, Molecular Biology of the Cell, vol.11, issue.12, pp.4131-4142, 2000.
DOI : 10.1091/mbc.11.12.4131

J. Schulzke, A. Gitter, J. Mankertz, S. Spiegel, U. Seidler et al., Epithelial transport and barrier function in occludin-deficient mice, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1669, issue.1, pp.34-42, 2005.
DOI : 10.1016/j.bbamem.2005.01.008

M. Furuse, H. Sasaki, and S. Tsukita, Manner of Interaction of Heterogeneous Claudin Species within and between Tight Junction Strands, The Journal of Cell Biology, vol.39, issue.4, pp.891-903, 1999.
DOI : 10.1007/s002329900380

K. Mineta, Y. Yamamoto, Y. Yamazaki, H. Tanaka, Y. Tada et al., Predicted expansion of the claudin multigene family, FEBS Letters, vol.25, issue.4, pp.606-612, 2011.
DOI : 10.1016/j.febslet.2011.01.028

K. Morita, M. Furuse, K. Fujimoto, and S. Tsukita, Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands, Proceedings of the National Academy of Sciences, vol.96, issue.2, pp.511-516, 1999.
DOI : 10.1073/pnas.96.2.511

H. Wolburg, K. Wolburg-buchholz, J. Kraus, G. Rascher-eggstein, S. Liebner et al., Localization of claudin-3 in tight junctions of the blood?brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme, Acta Neuropathol, vol.105, pp.586-592, 2003.

K. Morita, H. Sasaki, M. Furuse, and S. Tsukita, Endothelial Claudin, The Journal of Cell Biology, vol.107, issue.1, pp.185-194, 1999.
DOI : 10.1083/jcb.120.2.477

T. Nitta, M. Hata, S. Gotoh, Y. Seo, H. Sasaki et al., Size-selective loosening of the blood-brain barrier in claudin-5???deficient mice, The Journal of Cell Biology, vol.134, issue.3, pp.653-660, 2003.
DOI : 10.1016/S1537-1891(02)00200-8

S. Ohtsuki, S. Sato, H. Yamaguchi, M. Kamoi, T. Asashima et al., Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells, Journal of Cellular Physiology, vol.105, issue.1, pp.81-86, 2007.
DOI : 10.1002/jcp.20823

C. Piehl, J. Piontek, J. Cording, H. Wolburg, and I. Blasig, Participation of the second extracellular loop of claudin-5 in paracellular tightening against ions, small and large molecules, Cellular and Molecular Life Sciences, vol.284, issue.12, pp.2131-2140, 2010.
DOI : 10.1007/s00018-010-0332-8

J. Piontek, L. Winkler, H. Wolburg, S. Muller, N. Zuleger et al., Formation of tight junction: determinants of homophilic interaction between classic claudins, The FASEB Journal, vol.22, issue.1, pp.146-158, 2008.
DOI : 10.1096/fj.07-8319com

J. Zhang, J. Piontek, H. Wolburg, C. Piehl, M. Liss et al., Establishment of a neuroepithelial barrier by Claudin5a is essential for zebrafish brain ventricular lumen expansion, Proceedings of the National Academy of Sciences, vol.107, issue.4, pp.1425-1430, 2010.
DOI : 10.1073/pnas.0911996107

C. Coyne, T. Gambling, R. Boucher, J. Carson, and L. Johnson, Role of claudin interactions in airway tight junctional permeability, American Journal of Physiology - Lung Cellular and Molecular Physiology, vol.285, issue.5, pp.1166-1178, 2003.
DOI : 10.1152/ajplung.00182.2003

J. Piontek, S. Fritzsche, J. Cording, S. Richter, J. Hartwig et al., Elucidating the principles of the molecular organization of heteropolymeric tight junction strands, Cellular and Molecular Life Sciences, vol.79, issue.23, pp.3903-3918, 2011.
DOI : 10.1007/s00018-011-0680-z

G. Bazzoni, Pathobiology of Junctional Adhesion Molecules, Antioxidants & Redox Signaling, vol.15, issue.5, pp.1221-1234, 2011.
DOI : 10.1089/ars.2010.3867

K. Ebnet, A. Suzuki, S. Ohno, and D. Vestweber, Junctional adhesion molecules (JAMs): more molecules with dual functions?, Journal of Cell Science, vol.117, issue.1, pp.19-29, 2004.
DOI : 10.1242/jcs.00930

B. Stevenson, J. Siliciano, M. Mooseker, and D. Goodenough, Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia, The Journal of Cell Biology, vol.103, issue.3, pp.755-766, 1986.
DOI : 10.1083/jcb.103.3.755

B. Gumbiner, T. Lowenkopf, and D. Apatira, Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1., Proceedings of the National Academy of Sciences, vol.88, issue.8, pp.3460-3464, 1991.
DOI : 10.1073/pnas.88.8.3460

J. Haskins, L. Gu, E. Wittchen, J. Hibbard, and B. Stevenson, ZO-3, a Novel Member of the MAGUK Protein Family Found at the Tight Junction, Interacts with ZO-1 and Occludin, The Journal of Cell Biology, vol.110, issue.1, pp.199-208, 1998.
DOI : 10.1083/jcb.120.2.477

A. Fanning, B. Jameson, L. Jesaitis, and J. Anderson, The Tight Junction Protein ZO-1 Establishes a Link between the Transmembrane Protein Occludin and the Actin Cytoskeleton, Journal of Biological Chemistry, vol.273, issue.45, pp.29745-29753, 1998.
DOI : 10.1074/jbc.273.45.29745

M. Itoh, K. Morita, and S. Tsukita, Characterization of ZO-2 as a MAGUK Family Member Associated with Tight as well as Adherens Junctions with a Binding Affinity to Occludin and ?? Catenin, Journal of Biological Chemistry, vol.274, issue.9, pp.5981-5986, 1999.
DOI : 10.1074/jbc.274.9.5981

M. Itoh, M. Furuse, K. Morita, K. Kubota, M. Saitou et al., Direct Binding of Three Tight Junction-Associated Maguks, Zo-1, Zo-2, and Zo-3, with the Cooh Termini of Claudins, The Journal of Cell Biology, vol.262, issue.6, pp.1351-1363, 1999.
DOI : 10.1083/jcb.120.2.477

G. Bazzoni, O. Martinez-estrada, F. Orsenigo, M. Cordenonsi, S. Citi et al., Interaction of Junctional Adhesion Molecule with the Tight Junction Components ZO-1, Cingulin, and Occludin, Journal of Biological Chemistry, vol.275, issue.27, pp.20520-20526, 2000.
DOI : 10.1074/jbc.M905251199

M. Furuse, M. Itoh, T. Hirase, A. Nagafuchi, S. Yonemura et al., Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions, The Journal of Cell Biology, vol.127, issue.6, pp.1617-1626, 1994.
DOI : 10.1083/jcb.127.6.1617

K. Umeda, J. Ikenouchi, S. Katahira-tayama, K. Furuse, H. Sasaki et al., ZO-1 and ZO-2 Independently Determine Where Claudins Are Polymerized in Tight-Junction Strand Formation, Cell, vol.126, issue.4, pp.741-754, 2006.
DOI : 10.1016/j.cell.2006.06.043

A. Nusrat, G. Brown, J. Tom, A. Drake, T. Bui et al., Multiple Protein Interactions Involving Proposed Extracellular Loop Domains of the Tight Junction Protein Occludin, Molecular Biology of the Cell, vol.16, issue.4, pp.1725-1734, 2005.
DOI : 10.1091/mbc.E04-06-0465

A. Fanning, T. Ma, and J. Anderson, Isolation and functional characterization of the actin-binding region in the tight junction protein ZO-1, The FASEB Journal, vol.1
DOI : 10.1096/fj.02-0121fje

Y. Izumi, T. Hirose, Y. Tamai, S. Hirai, Y. Nagashima et al., Polarity Protein PAR-3, The Journal of Cell Biology, vol.108, issue.1, pp.95-106, 1998.
DOI : 10.1083/jcb.120.2.477

K. Ebnet, M. Aurrand-lions, A. Kuhn, F. Kiefer, S. Butz et al., The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity, Journal of Cell Science, vol.116, issue.19, pp.3879-3891, 2003.
DOI : 10.1242/jcs.00704

K. Ebnet, A. Suzuki, Y. Horikoshi, T. Hirose, M. Z. Brickwedde et al., The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM), The EMBO Journal, vol.20, issue.14, pp.3738-3748, 2001.
DOI : 10.1093/emboj/20.14.3738

M. Itoh, H. Sasaki, M. Furuse, H. Ozaki, T. Kita et al., Junctional adhesion molecule (JAM) binds to PAR-3, The Journal of Cell Biology, vol.163, issue.3, pp.491-497, 2001.
DOI : 10.1073/pnas.90.16.7834

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2196413

A. Suzuki, T. Yamanaka, T. Hirose, N. Manabe, K. Mizuno et al., Atypical Protein Kinase C Is Involved in the Evolutionarily Conserved Par Protein Complex and Plays a Critical Role in Establishing Epithelia-Specific Junctional Structures, The Journal of Cell Biology, vol.122, issue.6, pp.1183-1196, 2001.
DOI : 10.1083/jcb.150.6.1361

G. Joberty, C. Petersen, L. Gao, and I. Macara, The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42, Nature Cell Biology, vol.2, issue.8, pp.531-539, 2000.
DOI : 10.1038/35019573

D. Lin, A. Edwards, J. Fawcett, G. Mbamalu, J. Scott et al., A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity, Nat Cell Biol, vol.2, pp.540-547, 2000.

R. Daneman, L. Zhou, D. Agalliu, J. Cahoy, A. Kaushal et al., The Mouse Blood-Brain Barrier Transcriptome: A New Resource for Understanding the Development and Function of Brain Endothelial Cells, PLoS ONE, vol.174, issue.14, p.13741, 2010.
DOI : 10.1371/journal.pone.0013741.s007

B. Denker, C. Saha, S. Khawaja, and S. Nigam, Involvement of a heterotrimeric G protein alpha subunit in tight junction biogenesis, J Biol Chem, vol.271, pp.25750-25753, 1996.

C. Saha, S. Nigam, and B. Denker, Involvement of G??i2 in the Maintenance and Biogenesis of Epithelial Cell Tight Junctions, Journal of Biological Chemistry, vol.273, issue.34, pp.21629-21633, 1998.
DOI : 10.1074/jbc.273.34.21629

G. Fabian, C. Szabo, B. Bozo, J. Greenwood, P. Adamson et al., Expression of G-protein subtypes in cultured cerebral endothelial cells, Neurochemistry International, vol.33, issue.2, pp.179-185, 1998.
DOI : 10.1016/S0197-0186(98)00008-4

P. Adamson, B. Wilbourn, S. Etienne-manneville, V. Calder, E. Beraud et al., Lymphocyte trafficking through the blood-brain barrier is dependent on endothelial cell heterotrimeric G-protein signaling, The FASEB Journal, vol.16, issue.10, pp.1185-1194, 2002.
DOI : 10.1096/fj.02-0035com

R. Pero, M. Borchers, K. Spicher, S. Ochkur, L. Sikora et al., G??i2-mediated signaling events in the endothelium are involved in controlling leukocyte extravasation, Proceedings of the National Academy of Sciences, vol.104, issue.11, pp.4371-4376, 2007.
DOI : 10.1073/pnas.0700185104

N. Abbott, L. Ronnback, and E. Hansson, Astrocyte???endothelial interactions at the blood???brain barrier, Nature Reviews Neuroscience, vol.15, issue.1, pp.41-53, 2006.
DOI : 10.1046/j.1469-7580.2002.00065.x

R. Janzer and M. Raff, Astrocytes induce blood???brain barrier properties in endothelial cells, Nature, vol.31, issue.6101, pp.253-257, 1987.
DOI : 10.1083/jcb.85.3.890

D. Bonkowski, V. Katyshev, R. Balabanov, A. Borisov, and P. Dore-duffy, The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS, p.8, 2011.

I. Sa-pereira, D. Brites, and M. Brito, Neurovascular Unit: a Focus on Pericytes, Molecular Neurobiology, vol.45, issue.4, pp.327-347, 2012.
DOI : 10.1007/s12035-012-8244-2

E. Winkler, R. Bell, and B. Zlokovic, Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling, Molecular Neurodegeneration, vol.5, issue.1, p.32, 2010.
DOI : 10.1186/1750-1326-5-32

F. Arthur, R. Shivers, and P. Bowman, Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model, Developmental Brain Research, vol.36, issue.1, pp.155-159, 1987.
DOI : 10.1016/0165-3806(87)90075-7

O. Colgan, N. Collins, G. Ferguson, R. Murphy, Y. Birney et al., Influence of basolateral condition on the regulation of brain microvascular endothelial tight junction properties and barrier function, Brain Research, vol.1193, pp.84-92, 2008.
DOI : 10.1016/j.brainres.2007.11.072

S. Lee, W. Kim, Y. Choi, H. Song, M. Son et al., SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier, Nature Medicine, vol.9, issue.7, pp.900-906, 2003.
DOI : 10.1038/nm889

J. Neuhaus, W. Risau, and H. Wolburg, Induction of Blood-Brain Barrier Characteristics in Bovine Brain Endothelial Cells by Rat Astroglial Cells in Transfilter Coculture, Annals of the New York Academy of Sciences, vol.53, issue.1 Glial-Neurona, pp.578-580, 1991.
DOI : 10.1016/0165-3806(87)90075-7

L. Rubin, D. Hall, S. Porter, K. Barbu, C. Cannon et al., A cell culture model of the blood-brain barrier, The Journal of Cell Biology, vol.115, issue.6, pp.1725-1735, 1991.
DOI : 10.1083/jcb.115.6.1725

J. Tao-cheng, Z. Nagy, and M. Brightman, Tight junctions of brain endothelium in vitro are enhanced by astroglia, J Neurosci, vol.7, pp.3293-3299, 1987.

H. Wolburg, J. Neuhaus, U. Kniesel, B. Krauss, E. Schmid et al., Modulation of tight junction structure in blood?brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes, J Cell Sci, pp.1071347-1357, 1994.

S. Hori, S. Ohtsuki, K. Hosoya, E. Nakashima, and T. Terasaki, A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro, Journal of Neurochemistry, vol.280, issue.2, pp.503-513, 2004.
DOI : 10.1016/S0306-4522(02)00175-6

R. Daneman, L. Zhou, A. Kebede, and B. Barres, Pericytes are required for blood???brain barrier integrity during embryogenesis, Nature, vol.43, issue.7323, pp.562-566, 2010.
DOI : 10.1038/nature09513

A. Armulik, G. Genove, M. M. Nisancioglu, M. Wallgard, E. Niaudet et al., Pericytes regulate the blood???brain barrier, Nature, vol.57, issue.7323, pp.557-561, 2010.
DOI : 10.1038/nature09522

S. Dohgu, F. Takata, A. Yamauchi, S. Nakagawa, T. Egawa et al., Brain pericytes contribute to the induction and up-regulation of blood???brain barrier functions through transforming growth factor-?? production, Brain Research, vol.1038, issue.2, pp.208-215, 2005.
DOI : 10.1016/j.brainres.2005.01.027

S. Liebner, C. Czupalla, and H. Wolburg, Current concepts of blood-brain barrier development, The International Journal of Developmental Biology, vol.55, issue.4-5, pp.467-476, 2011.
DOI : 10.1387/ijdb.103224sl

T. Osada, Y. Gu, M. Kanazawa, Y. Tsubota, B. Hawkins et al., -Integrins, Journal of Cerebral Blood Flow & Metabolism, vol.16, issue.2, pp.1972-1985, 2011.
DOI : 10.1097/00001756-200004070-00035

URL : https://hal.archives-ouvertes.fr/jpa-00220587

A. Zovein, A. Luque, K. Turlo, J. Hofmann, K. Yee et al., ??1 Integrin Establishes Endothelial Cell Polarity and Arteriolar Lumen Formation via a Par3-Dependent Mechanism, Developmental Cell, vol.18, issue.1, pp.39-51, 2010.
DOI : 10.1016/j.devcel.2009.12.006

J. Alvarez, A. Dodelet-devillers, H. Kebir, I. Ifergan, P. Fabre et al., The Hedgehog Pathway Promotes Blood-Brain Barrier Integrity and CNS Immune Quiescence, Science, vol.334, issue.6063, pp.1727-1731, 2011.
DOI : 10.1126/science.1206936

S. Liebner, M. Corada, T. Bangsow, J. Babbage, A. Taddei et al., Wnt/??-catenin signaling controls development of the blood???brain barrier, The Journal of Cell Biology, vol.105, issue.3, pp.409-417, 2008.
DOI : 10.1038/nature01611

A. Taddei, C. Giampietro, A. Conti, F. Orsenigo, F. Breviario et al., Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5, Nature Cell Biology, vol.72, issue.8, pp.923-934, 2008.
DOI : 10.1016/S1534-5807(02)00401-X

M. Lampugnani, F. Orsenigo, N. Rudini, L. Maddaluno, G. Boulday et al., CCM1 regulates vascular-lumen organization by inducing endothelial polarity, Journal of Cell Science, vol.123, issue.7, pp.1073-1080, 2010.
DOI : 10.1242/jcs.059329

URL : http://hdl.handle.net/2434/141563

A. Chien, W. Conrad, and R. Moon, A Wnt Survival Guide: From Flies to Human Disease, Journal of Investigative Dermatology, vol.129, issue.7, pp.1614-1627, 2009.
DOI : 10.1038/jid.2008.445

J. Stenman, J. Rajagopal, T. Carroll, M. Ishibashi, J. Mcmahon et al., Canonical Wnt Signaling Regulates Organ-Specific Assembly and Differentiation of CNS Vasculature, Science, vol.322, issue.5905, pp.1247-1250, 2008.
DOI : 10.1126/science.1164594

X. Ye, Y. Wang, H. Cahill, M. Yu, T. Badea et al., Norrin, Frizzled-4, and Lrp5 Signaling in Endothelial Cells Controls a Genetic Program for Retinal Vascularization, Cell, vol.139, issue.2, pp.285-298, 2009.
DOI : 10.1016/j.cell.2009.07.047

R. Daneman, D. Agalliu, L. Zhou, F. Kuhnert, C. Kuo et al., Wnt/??-catenin signaling is required for CNS, but not non-CNS, angiogenesis, Proceedings of the National Academy of Sciences, vol.106, issue.2, pp.641-646, 2009.
DOI : 10.1073/pnas.0805165106

R. Paolinelli, M. Corada, F. Orsenigo, and E. Dejana, The molecular basis of the blood brain barrier differentiation and maintenance. Is it still a mystery?, Pharmacological Research, vol.63, issue.3, pp.165-171, 2011.
DOI : 10.1016/j.phrs.2010.11.012

C. Wu, F. Ivars, P. Anderson, R. Hallmann, D. Vestweber et al., Endothelial basement membrane laminin ??5 selectively inhibits T lymphocyte extravasation into the brain, Nature Medicine, vol.276, issue.5, pp.519-527, 2009.
DOI : 10.1038/nm.1957

URL : https://hal.archives-ouvertes.fr/inserm-00420073

A. Barber and E. Lieth, Agrin accumulates in the brain microvascular basal lamina during development of the blood-brain barrier, Developmental Dynamics, vol.129, issue.1, pp.62-74, 1997.
DOI : 10.1002/(SICI)1097-0177(199701)208:1<62::AID-AJA6>3.0.CO;2-#

G. Rascher, A. Fischmann, S. Kroger, F. Duffner, E. Grote et al., Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin, Acta Neuropathologica, vol.104, issue.1, pp.85-91, 2002.
DOI : 10.1007/s00401-002-0524-x

J. Gavard, Breaking the VE-cadherin bonds, FEBS Letters, vol.108, issue.1, pp.1-6, 2009.
DOI : 10.1016/j.febslet.2008.11.032

URL : https://hal.archives-ouvertes.fr/hal-00345388

E. Dejana and C. Giampietro, Vascular endothelial-cadherin and vascular stability, Current Opinion in Hematology, vol.19, issue.3, pp.218-223, 2012.
DOI : 10.1097/MOH.0b013e3283523e1c

E. Harris and W. Nelson, VE-cadherin: at the front, center, and sides of endothelial cell organization and function, Current Opinion in Cell Biology, vol.22, issue.5, pp.651-658, 2010.
DOI : 10.1016/j.ceb.2010.07.006

K. Stanness, L. Westrum, E. Fornaciari, P. Mascagni, J. Nelson et al., Morphological and functional characterization of an in vitro blood???brain barrier model, Brain Research, vol.771, issue.2, pp.329-342, 1997.
DOI : 10.1016/S0006-8993(97)00829-9

E. Mairey, A. Genovesio, E. Donnadieu, C. Bernard, F. Jaubert et al., attachment sites along the blood???brain barrier, The Journal of Experimental Medicine, vol.70, issue.8, pp.1939-1950, 2006.
DOI : 10.1161/01.RES.75.5.904

S. Santaguida, D. Janigro, M. Hossain, E. Oby, E. Rapp et al., Side by side comparison between dynamic versus static models of blood???brain barrier in vitro: A permeability study, Brain Research, vol.1109, issue.1, pp.1-13, 2006.
DOI : 10.1016/j.brainres.2006.06.027

O. Colgan, G. Ferguson, N. Collins, R. Murphy, G. Meade et al., Regulation of bovine brain microvascular endothelial tight junction assembly and barrier function by laminar shear stress, AJP: Heart and Circulatory Physiology, vol.292, issue.6, pp.3190-3197, 2007.
DOI : 10.1152/ajpheart.01177.2006

L. Krizanac-bengez, M. Mayberg, E. Cunningham, M. Hossain, S. Ponnampalam et al., Loss of shear stress induces leukocyte-mediated cytokine release and blood-brain barrier failure in dynamic in vitro blood-brain barrier model, Journal of Cellular Physiology, vol.65, issue.30, pp.68-77, 2006.
DOI : 10.1002/jcp.20429

V. Siddharthan, Y. Kim, S. Liu, and K. Kim, Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells, Brain Research, vol.1147, pp.39-50, 2007.
DOI : 10.1016/j.brainres.2007.02.029

L. Cucullo, M. Hossain, V. Puvenna, N. Marchi, and D. Janigro, The role of shear stress in Blood-Brain Barrier endothelial physiology, BMC Neuroscience, vol.12, issue.1, p.40, 2011.
DOI : 10.1111/j.1528-1167.2006.00960.x

T. Walsh, R. Murphy, P. Fitzpatrick, K. Rochfort, A. Guinan et al., Stabilization of brain microvascular endothelial barrier function by shear stress involves VE-cadherin signaling leading to modulation of pTyr-occludin levels, Journal of Cellular Physiology, vol.285, issue.11, pp.3053-3063, 2011.
DOI : 10.1002/jcp.22655

P. Cummins, Occludin: One Protein, Many Forms, Molecular and Cellular Biology, vol.32, issue.2, pp.242-250, 2012.
DOI : 10.1128/MCB.06029-11

M. Dorfel and O. Huber, Modulation of Tight Junction Structure and Function by Kinases and Phosphatases Targeting Occludin, Journal of Biomedicine and Biotechnology, vol.112, issue.23, p.807356, 2012.
DOI : 10.1074/jbc.M110.186932

T. Soma, H. Chiba, Y. Kato-mori, T. Wada, T. Yamashita et al., Thr207 of claudin-5 is involved in size-selective loosening of the endothelial barrier by cyclic AMP, Experimental Cell Research, vol.300, issue.1, pp.202-212, 2004.
DOI : 10.1016/j.yexcr.2004.07.012

C. Willis, D. Meske, and T. Davis, Protein Kinase C Activation Modulates Reversible Increase in Cortical Blood???Brain Barrier Permeability and Tight Junction Protein Expression during Hypoxia and Posthypoxic Reoxygenation, Journal of Cerebral Blood Flow & Metabolism, vol.5, issue.11, pp.1847-1859, 2010.
DOI : 10.1016/S1537-1891(03)00010-7

G. Kanmogne, K. Schall, J. Leibhart, B. Knipe, H. Gendelman et al., HIV-1 gp120 Compromises Blood???Brain Barrier Integrity and Enhance Monocyte Migration across Blood???Brain Barrier: Implication for Viral Neuropathogenesis, Journal of Cerebral Blood Flow & Metabolism, vol.278, issue.1, pp.123-134, 2007.
DOI : 10.1038/381661a0

M. Yamamoto, S. Ramirez, S. Sato, T. Kiyota, R. Cerny et al., Phosphorylation of Claudin-5 and Occludin by Rho Kinase in Brain Endothelial Cells, The American Journal of Pathology, vol.172, issue.2, pp.521-533, 2008.
DOI : 10.2353/ajpath.2008.070076

S. Stamatovic, O. Dimitrijevic, R. Keep, and A. Andjelkovic, Protein Kinase C??-RhoA Cross-talk in CCL2-induced Alterations in Brain Endothelial Permeability, Journal of Biological Chemistry, vol.281, issue.13, pp.8379-8388, 2006.
DOI : 10.1074/jbc.M513122200

J. Haorah, B. Knipe, J. Leibhart, A. Ghorpade, and Y. Persidsky, Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction, Journal of Leukocyte Biology, vol.78, issue.6, pp.1223-1232, 2005.
DOI : 10.1189/jlb.0605340

J. Haorah, D. Heilman, B. Knipe, J. Chrastil, J. Leibhart et al., Ethanol-Induced Activation of Myosin Light Chain Kinase Leads to Dysfunction of Tight Junctions and Blood-Brain Barrier Compromise, Alcoholism: Clinical & Experimental Research, vol.273, issue.6, pp.999-1009, 2005.
DOI : 10.1083/jcb.145.6.1293

C. Kuhlmann, R. Tamaki, M. Gamerdinger, V. Lessmann, C. Behl et al., Inhibition of the myosin light chain kinase prevents hypoxia-induced blood-brain barrier disruption, Journal of Neurochemistry, vol.112, issue.2, pp.501-507, 2007.
DOI : 10.1111/j.1471-4159.2007.04506.x

Y. Takenaga, N. Takagi, K. Murotomi, K. Tanonaka, and S. Takeo, Inhibition of Src Activity Decreases Tyrosine Phosphorylation of Occludin in Brain Capillaries and Attenuates Increase in Permeability of the Blood-Brain Barrier after Transient Focal Cerebral Ischemia, Journal of Cerebral Blood Flow & Metabolism, vol.22, issue.3, pp.1099-1108, 2009.
DOI : 10.1161/01.STR.0000177517.01203.eb

I. Andras, M. Deli, S. Veszelka, K. Hayashi, B. Hennig et al., The NMDA and AMPA/KA Receptors are Involved in Glutamate-Induced Alterations of Occludin Expression and Phosphorylation in Brain Endothelial Cells, Journal of Cerebral Blood Flow & Metabolism, vol.273, issue.18, pp.1431-1443, 2007.
DOI : 10.1038/35067088

W. Shen, S. Li, S. Chung, L. Zhu, J. Stayt et al., Tyrosine phosphorylation of VE-cadherin and claudin-5 is associated with TGF-??1-induced permeability of centrally derived vascular endothelium, European Journal of Cell Biology, vol.90, issue.4, pp.323-332, 2011.
DOI : 10.1016/j.ejcb.2010.10.013

J. Staddon, K. Herrenknecht, C. Smales, and L. Rubin, Evidence that tyrosine phosphorylation may increase tight junction permeability, J Cell Sci, vol.108, issue.2, pp.609-619, 1995.

S. Stamatovic, R. Keep, M. Wang, I. Jankovic, and A. Andjelkovic, Caveolae-mediated Internalization of Occludin and Claudin-5 during CCL2-induced Tight Junction Remodeling in Brain Endothelial Cells, Journal of Biological Chemistry, vol.284, issue.28, pp.19053-19066, 2009.
DOI : 10.1074/jbc.M109.000521

L. Tai, K. Holloway, D. Male, A. Loughlin, and I. Romero, Amyloid-betainduced occludin down-regulation and increased permeability in human brain endothelial cells is mediated by MAPK activation, J Cell Mol Med, vol.14, pp.1101-1112, 2010.

I. Andras, H. Pu, J. Tian, M. Deli, A. Nath et al., Signaling Mechanisms of HIV-1 Tat-Induced Alterations of Claudin-5 Expression in Brain Endothelial Cells, Journal of Cerebral Blood Flow & Metabolism, vol.73, issue.9, pp.1159-1170, 2005.
DOI : 10.4049/jimmunol.170.5.2629

S. Fischer, M. Wiesnet, H. Marti, D. Renz, and W. Schaper, Simultaneous activation of several second messengers in hypoxia-induced hyperpermeability of brain derived endothelial cells, Journal of Cellular Physiology, vol.276, issue.3, pp.359-369, 2004.
DOI : 10.1002/jcp.10417

K. Mark and T. Davis, Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation, American Journal of Physiology - Heart and Circulatory Physiology, vol.282, issue.4, pp.1485-1494, 2002.
DOI : 10.1152/ajpheart.00645.2001

T. Koto, K. Takubo, S. Ishida, H. Shinoda, M. Inoue et al., Hypoxia Disrupts the Barrier Function of Neural Blood Vessels through Changes in the Expression of Claudin-5 in Endothelial Cells, The American Journal of Pathology, vol.170, issue.4, pp.1389-1397, 2007.
DOI : 10.2353/ajpath.2007.060693

A. Argaw, B. Gurfein, Y. Zhang, A. Zameer, and G. John, VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown, Proceedings of the National Academy of Sciences, vol.106, issue.6, pp.1977-1982, 2009.
DOI : 10.1073/pnas.0808698106

H. Jiao, Z. Wang, Y. Liu, P. Wang, and Y. Xue, Specific Role of Tight Junction Proteins Claudin-5, Occludin, and ZO-1 of the Blood???Brain Barrier in a Focal Cerebral Ischemic Insult, Journal of Molecular Neuroscience, vol.29, issue.2, pp.130-139, 2011.
DOI : 10.1007/s12031-011-9496-4

P. Afonso, S. Ozden, M. Prevost, C. Schmitt, D. Seilhean et al., Human Blood-Brain Barrier Disruption by Retroviral-Infected Lymphocytes: Role of Myosin Light Chain Kinase in Endothelial Tight-Junction Disorganization, The Journal of Immunology, vol.179, issue.4, pp.2576-2583, 2007.
DOI : 10.4049/jimmunol.179.4.2576

URL : https://hal.archives-ouvertes.fr/pasteur-00364081

G. Schreibelt, G. Kooij, A. Reijerkerk, R. Van-doorn, S. Gringhuis et al., Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling, The FASEB Journal, vol.21, issue.13, pp.3666-3676, 2007.
DOI : 10.1096/fj.07-8329com

H. Clarke, A. Soler, and J. Mullin, Protein kinase C activation leads to dephosphorylation of occludin and tight junction permeability increase in LLC-PK1 epithelial cell sheets, J Cell Sci, vol.113, pp.3187-3196, 2000.

A. Sakakibara, M. Furuse, M. Saitou, Y. Ando-akatsuka, and S. Tsukita, Possible Involvement of Phosphorylation of Occludin in Tight Junction Formation, The Journal of Cell Biology, vol.83, issue.6, pp.1393-1401, 1997.
DOI : 10.1083/jcb.120.2.477

L. Morgan, B. Shah, L. Rivers, L. Barden, A. Groom et al., Inflammation and dephosphorylation of the tight junction protein occludin in an experimental model of multiple sclerosis, Neuroscience, vol.147, issue.3, pp.664-673, 2007.
DOI : 10.1016/j.neuroscience.2007.04.051

T. Ishizaki, H. Chiba, T. Kojima, M. Fujibe, T. Soma et al., Cyclic AMP induces phosphorylation of claudin-5 immunoprecipitates and expression of claudin-5 gene in blood???brain-barrier endothelial cells via protein kinase A-dependent and -independent pathways, Experimental Cell Research, vol.290, issue.2, pp.275-288, 2003.
DOI : 10.1016/S0014-4827(03)00354-9

K. Bruckener, E. Baya, A. Galla, H. Schmidt, and M. , Permeabilization in a cerebral endothelial barrier model by pertussis toxin involves the PKC effector pathway and is abolished by elevated levels of cAMP, Journal of Cell Science, vol.116, issue.9, pp.1837-1846, 2003.
DOI : 10.1242/jcs.00378

T. Desai, N. Leeper, K. Hynes, and B. Gewertz, Interleukin-6 Causes Endothelial Barrier Dysfunction via the Protein Kinase C Pathway, Journal of Surgical Research, vol.104, issue.2, pp.118-123, 2002.
DOI : 10.1006/jsre.2002.6415

A. Andreeva, E. Krause, E. Muller, I. Blasig, and D. Utepbergenov, Protein Kinase C Regulates the Phosphorylation and Cellular Localization of Occludin, Journal of Biological Chemistry, vol.276, issue.42, pp.38480-38486, 2001.
DOI : 10.1074/jbc.M104923200

R. Stuart and S. Nigam, Regulated assembly of tight junctions by protein kinase C., Proceedings of the National Academy of Sciences, vol.92, issue.13, pp.6072-6076, 1995.
DOI : 10.1073/pnas.92.13.6072

J. Hofmann, The potential for isoenzyme-selective modulation of protein kinase C, FASEB J, vol.11, pp.649-669, 1997.

M. Fleegal, S. Hom, L. Borg, and T. Davis, Activation of PKC modulates blood-brain barrier endothelial cell permeability changes induced by hypoxia and posthypoxic reoxygenation, AJP: Heart and Circulatory Physiology, vol.289, issue.5, pp.2012-2019, 2005.
DOI : 10.1152/ajpheart.00495.2005

A. Andreeva, J. Piontek, I. Blasig, and D. Utepbergenov, Assembly of tight junction is regulated by the antagonism of conventional and novel protein kinase C isoforms, The International Journal of Biochemistry & Cell Biology, vol.38, pp.222-233, 2006.
DOI : 10.1016/j.biocel.2005.09.001

E. Harrington, J. Brunelle, C. Shannon, E. Kim, K. Mennella et al., Role of Protein Kinase C Isoforms in Rat Epididymal Microvascular Endothelial Barrier Function, American Journal of Respiratory Cell and Molecular Biology, vol.28, issue.5, pp.626-636, 2003.
DOI : 10.1165/rcmb.2002-0085OC

Y. Sonobe, H. Takeuchi, K. Kataoka, H. Li, J. S. Mimuro et al., Interleukin-25 Expressed by Brain Capillary Endothelial Cells Maintains Blood-Brain Barrier Function in a Protein Kinase C??-dependent Manner, Journal of Biological Chemistry, vol.284, issue.46, pp.31834-31842, 2009.
DOI : 10.1074/jbc.M109.025940

B. Goldstein and I. Macara, The PAR Proteins: Fundamental Players in Animal Cell Polarization, Developmental Cell, vol.13, issue.5, pp.609-622, 2007.
DOI : 10.1016/j.devcel.2007.10.007

M. Coureuil, G. Mikaty, F. Miller, H. Lecuyer, C. Bernard et al., Meningococcal Type IV Pili Recruit the Polarity Complex to Cross the Brain Endothelium, Science, vol.325, issue.5936, pp.83-87, 2009.
DOI : 10.1126/science.1173196

S. Iden, D. Rehder, B. August, A. Suzuki, K. Wolburg-buchholz et al., A distinct PAR complex associates physically with VE-cadherin in vertebrate endothelial cells, EMBO reports, vol.42, issue.12, pp.1239-1246, 2006.
DOI : 10.1016/S0960-9822(03)00244-6

A. Birukova, K. Smurova, K. Birukov, K. Kaibuchi, J. Garcia et al., Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier dysfunction, Microvascular Research, vol.67, issue.1, pp.64-77, 2004.
DOI : 10.1016/j.mvr.2003.09.007

D. Boivin, D. Bilodeau, and R. Beliveau, Regulation of cytoskeletal functions by Rho small GTP-binding proteins in normal and cancer cells, Canadian Journal of Physiology and Pharmacology, vol.74, issue.7, pp.801-810, 1996.
DOI : 10.1139/y96-083

S. Stamatovic, R. Keep, S. Kunkel, and A. Andjelkovic, Potential role of MCP-1 in endothelial cell tight junction `opening': signaling via Rho and Rho kinase, Journal of Cell Science, vol.116, issue.22, pp.4615-4628, 2003.
DOI : 10.1242/jcs.00755

Y. Persidsky, D. Heilman, J. Haorah, M. Zelivyanskaya, R. Persidsky et al., Rho-mediated regulation of tight junctions during monocyte migration across the blood-brain barrier in HIV-1 encephalitis (HIVE), Blood, vol.107, issue.12, pp.4770-4780, 2006.
DOI : 10.1182/blood-2005-11-4721

P. Adamson, S. Etienne, P. Couraud, V. Calder, and J. Greenwood, Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM-1 via a rho-dependent pathway, J Immunol, vol.162, pp.2964-2973, 1999.

S. Etienne, P. Adamson, J. Greenwood, A. Strosberg, S. Cazaubon et al., ICAM-1 signaling pathways associated with Rho activation in microvascular brain endothelial cells, J Immunol, vol.161, pp.5755-5761, 1998.

B. Engelhardt and H. Wolburg, Mini-review: Transendothelial migration of leukocytes: through the front door or around the side of the house?, European Journal of Immunology, vol.105, issue.11, pp.2955-2963, 2004.
DOI : 10.1002/eji.200425327

Z. Goeckeler and R. Wysolmerski, Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation, The Journal of Cell Biology, vol.130, issue.3, pp.613-627, 1995.
DOI : 10.1083/jcb.130.3.613

E. Hixenbaugh, Z. Goeckeler, N. Papaiya, R. Wysolmerski, S. Silverstein et al., Stimulated neutrophils induce myosin light chain phosphorylation and isometric tension in endothelial cells, Am J Physiol, vol.273, pp.981-988, 1997.

A. Moy, S. Shasby, B. Scott, and D. Shasby, The effect of histamine and cyclic adenosine monophosphate on myosin light chain phosphorylation in human umbilical vein endothelial cells., Journal of Clinical Investigation, vol.92, issue.3
DOI : 10.1172/JCI116690

D. Antonetti, A. Barber, L. Hollinger, E. Wolpert, and T. Gardner, Vascular Endothelial Growth Factor Induces Rapid Phosphorylation of Tight Junction Proteins Occludin and Zonula Occluden 1: A POTENTIAL MECHANISM FOR VASCULAR PERMEABILITY IN DIABETIC RETINOPATHY AND TUMORS, Journal of Biological Chemistry, vol.274, issue.33, pp.23463-23467, 1999.
DOI : 10.1074/jbc.274.33.23463

B. Nico, D. Mangieri, E. Crivellato, V. Longo, D. Giorgis et al., HIF Activation and VEGF Overexpression are Coupled with ZO-1 Up-phosphorylation in the Brain of Dystrophic MDX Mouse, Brain Pathology, vol.285, issue.4, pp.399-406, 2007.
DOI : 10.1111/j.1471-4159.2004.02871.x

T. Kago, N. Takagi, I. Date, Y. Takenaga, K. Takagi et al., Cerebral ischemia enhances tyrosine phosphorylation of occludin in brain capillaries, Biochemical and Biophysical Research Communications, vol.339, issue.4, pp.1197-1203, 2006.
DOI : 10.1016/j.bbrc.2005.11.133

W. Wang, W. Dentler, and R. Borchardt, VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly, Am J Physiol Heart Circ Physiol, vol.280, pp.434-440, 2001.

P. Frank, S. Woodman, D. Park, and M. Lisanti, Caveolin, Caveolae, and Endothelial Cell Function, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.23, issue.7, pp.1161-1168, 2003.
DOI : 10.1161/01.ATV.0000070546.16946.3A

R. Sprenger, R. Fontijn, J. Van-marle, H. Pannekoek, and A. Horrevoets, Spatial segregation of transport and signalling functions between human endothelial caveolae and lipid raft proteomes, Biochemical Journal, vol.400, issue.3, pp.401-410, 2006.
DOI : 10.1042/BJ20060355

URL : https://hal.archives-ouvertes.fr/hal-00478550

A. Nusrat, C. Parkos, P. Verkade, C. Foley, T. Liang et al., Tight junctions are membrane microdomains, J Cell Sci, vol.113, pp.1771-1781, 2000.

L. Shen and J. Turner, Actin Depolymerization Disrupts Tight Junctions via Caveolae-mediated Endocytosis, Molecular Biology of the Cell, vol.16, issue.9, pp.3919-3936, 2005.
DOI : 10.1091/mbc.E04-12-1089

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1196308

I. Andras, H. Pu, M. Deli, A. Nath, B. Hennig et al., HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells, Journal of Neuroscience Research, vol.14, issue.Suppl, pp.255-265, 2003.
DOI : 10.1002/jnr.10762

N. Urban, K. Willig, S. Hell, and U. Nagerl, STED Nanoscopy of Actin Dynamics in Synapses Deep Inside Living Brain Slices, Biophysical Journal, vol.101, issue.5, pp.1277-1284, 2011.
DOI : 10.1016/j.bpj.2011.07.027

S. Keene, T. Greco, I. Parastatidis, S. Lee, E. Hughes et al., Mass spectrometric and computational analysis of cytokine-induced alterations in the astrocyte secretome, PROTEOMICS, vol.23, issue.3, pp.768-782, 2009.
DOI : 10.1002/pmic.200800385

P. Picotti and R. Aebersold, Selected reaction monitoring???based proteomics: workflows, potential, pitfalls and future directions, Nature Methods, vol.56, issue.6, pp.555-566, 2012.
DOI : 10.1038/nmeth.2015

Y. Uchida, S. Ohtsuki, Y. Katsukura, C. Ikeda, T. Suzuki et al., Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors, Journal of Neurochemistry, vol.35, issue.Pt 2, pp.333-345, 2011.
DOI : 10.1111/j.1471-4159.2011.07208.x