Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis.

Abstract : Diffusion tensor imaging (DTI) has become the major modality to study properties of white matter and the geometry of fiber tracts of the human brain. Clinical studies mostly focus on regional statistics of fractional anisotropy (FA) and mean diffusivity (MD) derived from tensors. Existing analysis techniques do not sufficiently take into account that the measurements are tensors, and thus require proper interpolation and statistics based on tensors, and that regions of interest are fiber tracts with complex spatial geometry. We propose a new framework for quantitative tract-oriented DTI analysis that includes tensor interpolation and averaging, using nonlinear Riemannian symmetric space. As a result, tracts of interest are represented by the geometry of the medial spine attributed with tensor statistics calculated within cross-sections. Examples from a clinical neuroimaging study of the early developing brain illustrate the potential of this new method to assess white matter fiber maturation and integrity.
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger
Contributeur : Isabelle Corouge <>
Soumis le : mardi 8 janvier 2013 - 11:00:09
Dernière modification le : lundi 19 janvier 2015 - 11:49:49
Document(s) archivé(s) le : samedi 1 avril 2017 - 01:13:21


 Accès restreint
Fichier visible le : jamais

Connectez-vous pour demander l'accès au fichier


  • HAL Id : inserm-00771199, version 1
  • PUBMED : 16685838



Isabelle Corouge, Thomas Fletcher, Sarang Joshi, John Gilmore, Guido Gerig. Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis.. Med Image Comput Comput Assist Interv, Springer, 2005, 8 (Pt 1), pp.131-9. 〈inserm-00771199〉



Consultations de la notice