P. Beachy, S. Karhadkar, and D. Berman, Tissue repair and stem cell renewal in carcinogenesis, Nature, vol.24, issue.7015, pp.324-331, 2004.
DOI : 10.1038/nature03100

M. Shen and A. Schier, The EGF-CFC gene family in vertebrate development, Trends in Genetics, vol.16, issue.7, pp.303-309, 2000.
DOI : 10.1016/S0168-9525(00)02006-0

S. Assou, A Meta-Analysis of Human Embryonic Stem Cells Transcriptome Integrated into a Web-Based Expression Atlas, Translated from eng) Stem Cells, pp.961-968, 2007.
DOI : 10.1634/stemcells.2006-0352

URL : https://hal.archives-ouvertes.fr/inserm-00128925

G. Minchiotti, Nodal-dependant Cripto signaling in ES cells: from stem cells to tumor biology, Oncogene, vol.126, issue.37, pp.5668-5675, 2005.
DOI : 10.1016/S0092-8674(00)80918-6

K. Miharada, Cripto regulates hematopoietic stem cells as a hypoxic-niche- 11 related factor through cell surface receptor GRP78. (Translated from eng), Cell Stem Cell, vol.12, issue.94, pp.330-344, 2011.

G. Minchiotti, Structure-function analysis of the EGF-CFC family member 14, 2001.

C. Bianco, Cripto-1 activates nodal-and ALK4-dependent and -independent 17 signaling pathways in mammary epithelial Cells. (Translated from eng), Mol Cell Biol, vol.18, issue.8, pp.222586-2597, 2002.

J. Chu, Non-cell-autonomous role for Cripto in axial midline formation during vertebrate embryogenesis, Development, vol.132, issue.24, pp.5539-5551, 2005.
DOI : 10.1242/dev.02157

E. Reissmann, The orphan receptor ALK7 and the Activin receptor ALK4 22 mediate signaling by Nodal proteins during vertebrate development, p.23, 2001.

S. Cheng, F. Olale, J. Bennett, A. Brivanlou, and A. Schier, EGF-CFC proteins are 25 essential coreceptors for the TGF-beta signals Vg1 and GDF1. (Translated from eng, Genes, vol.26, issue.27, pp.31-36, 2003.

X. Shi and D. Garry, Muscle stem cells in development, regeneration, and disease, Genes & Development, vol.20, issue.13, pp.1692-1708, 2006.
DOI : 10.1101/gad.1419406

J. Massague and Y. Chen, Controlling TGF-beta signaling, p.30, 2000.

H. Adkins, Antibody blockade of the Cripto CFC domain suppresses tumor 32 cell growth in vivo. (Translated from eng 33 14 Cripto forms a complex with activin and type II 34 activin receptors and can block activin signaling. (Translated from eng) Proc Natl Acad Sci 35 U S A Cripto binds transforming growth 37 factor beta (TGF-beta) and inhibits TGF-beta signaling, J Clin Invest Mol Cell Biol, vol.112, issue.39, pp.575-5875193, 2003.

E. Adamson, G. Minchiotti, and D. Salomon, Cripto: A tumor growth factor and more, Journal of Cellular Physiology, vol.92, issue.3, pp.267-278, 2002.
DOI : 10.1002/jcp.10072

L. Strizzi, C. Bianco, N. Normanno, and D. Salomon, Cripto-1: a multifunctional 42 modulator during embryogenesis and oncogenesis. (Translated from eng, Oncogene, vol.43, issue.44, pp.245731-5741, 2005.

S. Charge and M. Rudnicki, Cellular and Molecular Regulation of Muscle Regeneration, Physiological Reviews, vol.84, issue.1, pp.209-238, 2004.
DOI : 10.1152/physrev.00019.2003

P. Seale, Pax7 Is Required for the Specification of Myogenic Satellite Cells, Cell, vol.102, issue.6, pp.777-786, 2000.
DOI : 10.1016/S0092-8674(00)00066-0

S. Lee and A. Mcpherron, Regulation of myostatin activity and muscle growth, Proceedings of the National Academy of Sciences, vol.98, issue.16, pp.9306-9311, 2001.
DOI : 10.1073/pnas.151270098

A. Otto, Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration, Journal of Cell Science, vol.121, issue.17, pp.2939-2950, 2008.
DOI : 10.1242/jcs.026534

P. Zammit, Muscle satellite cells adopt divergent fates, The Journal of Cell Biology, vol.111, issue.3, pp.347-357, 2004.
DOI : 10.1006/excr.2002.5653

J. Beauchamp, Expression of CD34 and Myf5 defines the majority of 19 quiescent adult skeletal muscle satellite cells. (Translated from eng), J Cell Biol, vol.20, issue.6, pp.1511221-1234, 2000.

S. Tajbakhsh, D. Rocancourt, and M. Buckingham, Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice, Nature, vol.384, issue.6606, pp.266-270, 1996.
DOI : 10.1038/384266a0

J. Ding, Cripto is required for correct orientation of the anterior-posterior axis in 25 the mouse embryo. (Translated from eng, Nature, vol.395, issue.26, pp.702-707, 1998.

P. Mourikis, A Critical Requirement for Notch Signaling in Maintenance of the 27 Quiescent Skeletal Muscle Stem Cell State, Translated from Eng) Stem Cells, p.31, 2011.

S. Parisi, Nodal-dependent Cripto signaling promotes cardiomyogenesis and 29 redirects the neural fate of embryonic stem cells. (Translated from eng), J Cell Biol, vol.30, issue.2, pp.163303-314, 2003.

N. Arsic, Induction of functional neovascularization by combined VEGF and angiopoietin-1 gene transfer using AAV vectors, Molecular Therapy, vol.7, issue.4, pp.450-483, 2003.
DOI : 10.1016/S1525-0016(03)00034-0

Z. Qu, Development of Approaches to Improve Cell Survival in Myoblast Transfer Therapy, The Journal of Cell Biology, vol.70, issue.5, pp.1257-1267, 1998.
DOI : 10.1038/333466a0

G. Minchiotti, Membrane-anchorage of Cripto protein by glycosylphosphatidylinositol and its distribution during early mouse development, 39 35. Shen MM (2003) Decrypting the role of Cripto in tumorigenesis. (Translated from eng) J 40 Clin Invest, pp.133-142500, 2000.
DOI : 10.1016/S0925-4773(99)00235-X

M. Thomas, Myostatin, a Negative Regulator of Muscle Growth, Functions by Inhibiting Myoblast Proliferation, Journal of Biological Chemistry, vol.275, issue.51, pp.40235-40243, 2000.
DOI : 10.1074/jbc.M004356200

B. Chazaud, Satellite cells attract monocytes and use macrophages as a support 1 to escape apoptosis and enhance muscle growth. (Translated from eng), J Cell Biol, vol.2, issue.3, pp.1631133-1143, 2003.

M. Hara, G-CSF influences mouse skeletal muscle development and 4 regeneration by stimulating myoblast proliferation. (Translated from Eng, J Exp Med, vol.6, p.40, 2011.

H. Gilson, Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin, AJP: Endocrinology and Metabolism, vol.297, issue.1, 2009.
DOI : 10.1152/ajpendo.00193.2009

M. Cassano, Cellular mechanisms and local progenitor activation to regulate skeletal muscle mass, Journal of Muscle Research and Cell Motility, vol.26, issue.6, pp.243-253, 2009.
DOI : 10.1007/s10974-010-9204-y

C. Bentzinger, J. Von-maltzahn, and M. Rudnicki, Extrinsic regulation of satellite cell specification, Stem Cell Research & Therapy, vol.1, issue.3, pp.27-43, 2010.
DOI : 10.1186/scrt27

D. Joulia, Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin, Experimental Cell Research, vol.286, issue.2, pp.263-275, 2003.
DOI : 10.1016/S0014-4827(03)00074-0

H. Amthor, A. Otto, R. Macharia, I. Mckinnell, and K. Patel, Myostatin imposes 17 reversible quiescence on embryonic muscle precursors, Translated from eng) Dev Dyn 18, pp.672-680, 2006.

M. Manceau, Myostatin promotes the terminal differentiation of embryonic muscle progenitors, Genes & Development, vol.22, issue.5, pp.668-681, 2008.
DOI : 10.1101/gad.454408

URL : https://hal.archives-ouvertes.fr/hal-00306001

H. Amthor, Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity, Proceedings of the National Academy of Sciences, vol.106, issue.18, pp.7479-7502, 2009.
DOI : 10.1073/pnas.0811129106

P. Ciarmela, Activin-A and myostatin response and steroid regulation in human 25 myometrium: disruption of their signalling in uterine fibroid. (Translated from eng, J Clin Endocrinol Metab, vol.26, issue.27, pp.755-765, 2011.

D. Kemaladewi, Cell-type specific regulation of myostatin signaling, The FASEB Journal, vol.26, issue.4, p.49, 2011.
DOI : 10.1096/fj.11-191189

T. Rando and H. Blau, Primary mouse myoblast purification, characterization, and 30 transplantation for cell-mediated gene therapy. (Translated from eng), J Cell Biol, vol.31, issue.32, pp.1251275-1287, 1994.

D. Montarras, Direct isolation of satellite cells for skeletal muscle regeneration Culturing satellite cells from 35 living single muscle fiber explants, Science In Vitro Cell Dev Biol Anim, vol.33, issue.37, pp.2064-2067, 1995.

R. Ferreira, Proteolysis activation and proteome alterations in murine skeletal 38 muscle submitted to 1 week of hindlimb suspension. (Translated from eng) Eur J Appl 39, Physiol, vol.107, issue.5, pp.553-563, 2009.

J. Kelber, G. Shani, E. Booker, W. Vale, and P. Gray, Cripto Is a Noncompetitive Activin Antagonist That Forms Analogous Signaling Complexes with Activin and Nodal, Journal of Biological Chemistry, vol.283, issue.8, pp.4490-4500, 2008.
DOI : 10.1074/jbc.M704960200

G. Minchiotti, Structure-function analysis of the EGF-CFC family member Cripto identifies residues essential for nodal signalling. (Translated from eng, Development, vol.128, issue.22, pp.4501-4510, 2001.

G. Minchiotti, Membrane-anchorage of Cripto protein by glycosylphosphatidylinositol and its distribution during early mouse development, Mechanisms of Development, vol.90, issue.2, pp.133-142, 2000.
DOI : 10.1016/S0925-4773(99)00235-X

J. Beauchamp, Expression of Cd34 and Myf5 Defines the Majority of Quiescent Adult Skeletal Muscle Satellite Cells, The Journal of Cell Biology, vol.85, issue.6, pp.1221-1234, 2000.
DOI : 10.1093/nar/19.23.6433

D. Montarras, Direct Isolation of Satellite Cells for Skeletal Muscle Regeneration, Science, vol.309, issue.5743, pp.2064-2067, 2005.
DOI : 10.1126/science.1114758

URL : https://hal.archives-ouvertes.fr/pasteur-00181349

J. Rosenblatt, A. Lunt, D. Parry, and T. Partridge, Culturing satellite cells from living single muscle fiber explants, In Vitro Cellular & Developmental Biology - Animal, vol.164, issue.10, pp.773-779, 1995.
DOI : 10.1007/BF02634119

S. Brunelli, F. Relaix, S. Baesso, M. Buckingham, and G. Cossu, Beta catenin-independent activation of MyoD in presomitic mesoderm requires PKC and depends on Pax3 transcriptional activity, Developmental Biology, vol.304, issue.2, pp.604-614, 2007.
DOI : 10.1016/j.ydbio.2007.01.006

P. Zammit, Muscle satellite cells adopt divergent fates, The Journal of Cell Biology, vol.111, issue.3, pp.347-357, 2004.
DOI : 10.1006/excr.2002.5653

R. Abou-khalil, Autocrine and Paracrine Angiopoietin 1/Tie-2 Signaling Promotes Muscle Satellite Cell Self-Renewal, Cell Stem Cell, vol.5, issue.3, pp.298-309, 2009.
DOI : 10.1016/j.stem.2009.06.001

*. P<0, Cross sectional area (CSA) analysis of regenerated fibers in model of less severe muscle damage (10 -5 M CTX), showing increased myofiber size in Ad-sCripto treated mice compared to control. (D) Quantitative analysis of F4/80 positive cell area in mice treated with Ad-sCripto vs Ad-Control at day4

±. 2% and . Ad, 9 ± 3% after Ad-Control at day 22; n=5 mice/group; P=NS; n=5 mice/group; P=NS) Values are mean ± SEM, 5 mice/time point. (E) PCR genotyping of TA muscle and bone marrow DNA from Tg:Pax7-CreERT2::Cripto loxP

S. Figure, GPI-anchored Cripto protein (mCripto) promotes myoblast proliferation and antagonizes Myostatin/GDF8 signaling pathway

. Smad2, Smad2 or -Cripto antibodies were used. (D) Expression of Cripto (E) Myostatin in TA muscles at day4, 8 and 22 after CTX injection, as shown by qRT-PCR. mRNA expression