D. Altman and J. Bland, Statistics notes: Treatment allocation in controlled trials: why randomise?, BMJ, vol.318, issue.7192, p.3181209, 1999.
DOI : 10.1136/bmj.318.7192.1209

O. Miettinen, The need for randomization in the study of intended effects, Statistics in Medicine, vol.33, issue.2, pp.267-271, 1983.
DOI : 10.1002/sim.4780020222

N. Black, Why we need observational studies to evaluate the effectiveness of health care, BMJ, vol.312, issue.7040, pp.3121215-1218, 1996.
DOI : 10.1136/bmj.312.7040.1215

K. Benson and A. Hartz, A comparison of observational studies and randomized, controlled trials, American Journal of Ophthalmology, vol.130, issue.5, p.688, 2000.
DOI : 10.1016/S0002-9394(00)00754-6

T. Stukel, E. Fisher, D. Wennberg, D. Alter, D. Gottlieb et al., Analysis of Observational Studies in the Presence of Treatment Selection Bias, JAMA, vol.297, issue.3, pp.278-285, 2007.
DOI : 10.1001/jama.297.3.278

M. Aoudjhane, M. Labopin, N. Gorin, A. Shimoni, T. Ruutu et al., Comparative outcome of reduced intensity and myeloablative conditioning regimen in HLA identical sibling allogeneic haematopoietic stem cell transplantation for patients older than 50 years of age with acute myeloblastic leukaemia: a retrospective survey from the Acute Leukemia Working Party (ALWP) of the European group for Blood and Marrow Transplantation (EBMT), Leukemia, vol.18, issue.12, pp.2304-2312, 2005.
DOI : 10.1016/S0140-6736(00)02137-1

S. Giralt, E. Estey, M. Albitar, K. Van-besien, G. Rondon et al., Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy, pp.894531-4536, 1997.

I. Khouri, M. Keating, M. Korbling, D. Przepiorka, P. Anderlini et al., Transplant-lite: induction of graft-versus-malignancy using fludarabine-based nonablative chemotherapy and allogeneic blood progenitor-cell transplantation as treatment for lymphoid malignancies., Journal of Clinical Oncology, vol.16, issue.8, pp.162817-2824, 1998.
DOI : 10.1200/JCO.1998.16.8.2817

P. Mcsweeney, D. Niederwieser, J. Shizuru, B. Sandmaier, A. Molina et al., Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects, Blood, vol.97, issue.11, pp.973390-3400, 2001.
DOI : 10.1182/blood.V97.11.3390

N. Milpied, A. Fielding, R. Pearce, P. Ernst, and A. Goldstone, Allogeneic bone marrow transplant is not better than autologous transplant for patients with relapsed Hodgkin's disease. European Group for Blood and Bone Marrow Transplantation., Journal of Clinical Oncology, vol.14, issue.4, pp.1291-1296, 1996.
DOI : 10.1200/JCO.1996.14.4.1291

A. Peniket, M. Ruiz-de-elvira, G. Taghipour, C. Cordonnier, E. Gluckman et al., An EBMT registry matched study of allogeneic stem cell transplants for lymphoma: allogeneic transplantation is associated with a lower relapse rate but a higher procedure-related mortality rate than autologous transplantation, Bone Marrow Transplantation, vol.31, issue.8, pp.31667-678, 2003.
DOI : 10.1038/sj.bmt.1703891

K. Van-besien, F. Loberiza, . Jr, R. Bajorunaite, J. Armitage et al., Comparison of autologous and allogeneic hematopoietic stem cell transplantation for follicular lymphoma, Blood, vol.102, issue.10, pp.1023521-3529, 2003.
DOI : 10.1182/blood-2003-04-1205

B. Sarina, L. Castagna, L. Farina, F. Patriarca, F. Benedetti et al., Allogeneic transplantation improves the overall and progression-free survival of Hodgkin lymphoma patients relapsing after autologous transplantation: a retrospective study based on the time of HLA typing and donor availability, Blood, vol.115, issue.18, pp.1153671-3677, 2010.
DOI : 10.1182/blood-2009-12-253856

S. Slavin, A. Nagler, E. Naparstek, Y. Kapelushnik, M. Aker et al., Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases, Blood, issue.3, pp.91756-763, 1998.

M. Mohty, A. Nagler, and N. Killmann, Reduced-intensity conditioning allogeneic stem cell transplantation: hype, reality or time for a rethink?, Leukemia, vol.20, issue.10, pp.1653-1654, 2006.
DOI : 10.1038/sj.leu.2404336

B. Bruno, M. Rotta, F. Patriarca, N. Mordini, B. Allione et al., A Comparison of Allografting with Autografting for Newly Diagnosed Myeloma, New England Journal of Medicine, vol.356, issue.11, pp.3561110-1120, 2007.
DOI : 10.1056/NEJMoa065464

F. Garban, M. Attal, M. Michallet, C. Hulin, J. Bourhis et al., Prospective comparison of autologous stem cell transplantation followed by dose-reduced allograft (IFM99-03 trial) with tandem autologous stem cell transplantation (IFM99-04 trial) in high-risk de novo multiple myeloma, Blood, vol.107, issue.9, pp.3474-3480, 2006.
DOI : 10.1182/blood-2005-09-3869

P. Moreau, F. Garban, M. Attal, M. Michallet, G. Marit et al., Long-term follow-up results of IFM99-03 and IFM99-04 trials comparing nonmyeloablative allotransplantation with autologous transplantation in high-risk de novo multiple myeloma, Blood, vol.112, issue.9, pp.3914-3915, 2008.
DOI : 10.1182/blood-2008-07-168823

URL : https://hal.archives-ouvertes.fr/hal-00821148

E. Archimbaud, X. Thomas, M. Michallet, J. Jaubert, J. Troncy et al., Prospective genetically randomized comparison between intensive postinduction chemotherapy and bone marrow transplantation in adults with newly diagnosed acute myeloid leukemia., Journal of Clinical Oncology, vol.12, issue.2, pp.262-267, 1994.
DOI : 10.1200/JCO.1994.12.2.262

J. Cornelissen, B. Van-der-holt, G. Verhoef, . Van-'t, M. Veer et al., Myeloablative allogeneic versus autologous stem cell transplantation in adult patients with acute lymphoblastic leukemia in first remission: a prospective sibling donor versus no-donor comparison, Blood, vol.113, issue.6, pp.1375-1382, 2009.
DOI : 10.1182/blood-2008-07-168625

B. Logan, E. Leifer, C. Bredeson, M. Horowitz, M. Ewell et al., Use of biological assignment in hematopoietic stem cell transplantation clinical trials, Clinical Trials, vol.5, issue.6, pp.607-616, 2008.
DOI : 10.1177/1740774508098326

S. Pocock and D. Elbourne, Randomized Trials or Observational Tribulations?, New England Journal of Medicine, vol.342, issue.25, pp.1907-1909, 2000.
DOI : 10.1056/NEJM200006223422511

D. Grobbee and A. Hoes, Confounding and indication for treatment in evaluation of drug treatment for hypertension, BMJ, vol.315, issue.7116, pp.3151151-1154, 1997.
DOI : 10.1136/bmj.315.7116.1151

M. Hernan, A definition of causal effect for epidemiological research, Journal of Epidemiology & Community Health, vol.58, issue.4, pp.265-271, 2004.
DOI : 10.1136/jech.2002.006361

P. Holland and D. Rubin, Causal Inference in Retrospective Studies, Evaluation Review, vol.12, issue.3, p.203, 1988.
DOI : 10.1177/0193841X8801200301

M. Hernan and J. Robins, Estimating causal effects from epidemiological data, Journal of Epidemiology & Community Health, vol.60, issue.7, pp.578-586, 2006.
DOI : 10.1136/jech.2004.029496

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652882

P. Rosenbaum and D. Rubin, The central role of the propensity score in observational studies for causal effects, Biometrika, vol.70, issue.1, pp.41-55, 1983.
DOI : 10.1093/biomet/70.1.41

J. Robins, M. Hernan, and B. Brumback, Marginal Structural Models and Causal Inference in Epidemiology, Epidemiology, vol.11, issue.5, pp.550-560, 2000.
DOI : 10.1097/00001648-200009000-00011

T. Zhiqiang, A distributional approach for causal inference using propensity scores, J Am Stat Assoc, vol.101, issue.476, pp.1619-1637, 2006.

P. Austin, The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials, pp.20-36, 2007.

K. Mortimer, R. Neugebauer, M. Van-der-laan, and I. Tager, An Application of Model-Fitting Procedures for Marginal Structural Models, American Journal of Epidemiology, vol.162, issue.4, pp.382-388, 2005.
DOI : 10.1093/aje/kwi208

P. Austin, Different measures of treatment effect for different research questions, Journal of Clinical Epidemiology, vol.63, issue.1, pp.9-10
DOI : 10.1016/j.jclinepi.2009.07.006

L. Karlin, B. Arnulf, S. Chevret, L. Ades, R. M. et al., Tandem autologous non-myeloablative allogeneic transplantation in patients with multiple myeloma relapsing after a first high dose therapy, Bone Marrow Transplantation, vol.88, issue.2, pp.250-256, 2010.
DOI : 10.1038/leu.2008.88

D. Agostino and R. Jr, Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group, pp.2265-2281, 1998.

P. Rosenbaum and D. Rubin, Reducing Bias in Observational Studies Using Subclassification on the Propensity Score, Journal of the American Statistical Association, vol.6, issue.387, pp.516-524, 1984.
DOI : 10.1080/01621459.1984.10478078

J. Lunceford and M. Davidian, Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study, Statistics in Medicine, vol.23, issue.19, pp.2937-2960, 2004.
DOI : 10.1002/sim.7231

M. Brookhart, S. Schneeweiss, K. Rothman, R. Glynn, J. Avorn et al., Variable Selection for Propensity Score Models, American Journal of Epidemiology, vol.163, issue.12, pp.1149-1156, 2006.
DOI : 10.1093/aje/kwj149

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1513192

D. Rubin and N. Thomas, Matching Using Estimated Propensity Scores: Relating Theory to Practice, Biometrics, vol.52, issue.1, pp.249-264, 1996.
DOI : 10.2307/2533160

P. Austin, Type I Error Rates, Coverage of Confidence Intervals, and Variance Estimation in Propensity-Score Matched Analyses, The International Journal of Biostatistics, vol.5, issue.1, pp.1557-4679, 2009.
DOI : 10.2202/1557-4679.1146

P. Austin, P. Grootendorst, and G. Anderson, A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study, Statistics in Medicine, vol.2, issue.4, pp.734-753, 2007.
DOI : 10.1002/sim.2580

P. Austin, Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples, Statistics in Medicine, vol.17, issue.1, pp.3083-3107, 2009.
DOI : 10.1002/sim.3697

P. Austin and M. Mamdani, A comparison of propensity score methods: a case-study estimating the effectiveness of post-AMI statin use, Statistics in Medicine, vol.288, issue.12
DOI : 10.1002/sim.2328

M. Joffe, T. Have, T. Feldman, and H. , Model Selection, Confounder Control, and Marginal Structural Models, The American Statistician, vol.58, issue.4, pp.272-279, 2004.
DOI : 10.1198/000313004X5824

M. Hernan and J. Robins, Instruments for causal inference: an epidemiologist's dream? Epidemiology, pp.360-372, 2006.

M. Hernan, B. Brumback, and J. Robins, Marginal Structural Models to Estimate the Causal Effect of Zidovudine on the Survival of HIV-Positive Men, Epidemiology, vol.11, issue.5, pp.561-570, 2000.
DOI : 10.1097/00001648-200009000-00012

S. Cole and M. Hernan, Constructing Inverse Probability Weights for Marginal Structural Models, American Journal of Epidemiology, vol.168, issue.6, pp.656-664, 2008.
DOI : 10.1093/aje/kwn164

P. Rosenbaum, Model-Based Direct Adjustment, Journal of the American Statistical Association, vol.146, issue.398, pp.387-394, 1987.
DOI : 10.1080/01621459.1987.10478441

R. Team, R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2009.

A. Ahmed, G. Perry, J. Fleg, T. Love, D. Goff et al., Outcomes in ambulatory chronic systolic and diastolic heart failure: A propensity score analysis, American Heart Journal, vol.152, issue.5, pp.956-966, 2006.
DOI : 10.1016/j.ahj.2006.06.020

D. Collet, Modelling survival data in medical research, 2003.
DOI : 10.1007/978-1-4899-3115-3

J. Concato, N. Shah, and R. Horwitz, Randomized, Controlled Trials, Observational Studies, and the Hierarchy of Research Designs, New England Journal of Medicine, vol.342, issue.25, pp.1887-1892, 2000.
DOI : 10.1056/NEJM200006223422507

Y. Chang, L. Chen, K. Chung, and M. Lai, Application of propensity score model to examine the prognostic significance of lymph node number as a care quality indicator, Surgical Oncology, vol.21, issue.2, pp.75-85
DOI : 10.1016/j.suronc.2011.12.003

E. Gayat, R. Pirracchio, M. Resche-rigon, A. Mebazaa, J. Mary et al., Propensity scores in intensive care and anaesthesiology literature: a systematic review, Intensive Care Medicine, vol.24, issue.12, pp.1993-2003, 2010.
DOI : 10.1007/s00134-010-1991-5

K. Oshima, W. Takahashi, Y. Asano-mori, K. Izutsu, T. Takahashi et al., Intensive chemotherapy for elderly patients with acute myelogeneous leukemia: a propensity score analysis by the Japan Hematology and Oncology Clinical Study Group (J-HOCS), Annals of Hematology, vol.8, issue.10, pp.1-7
DOI : 10.1007/s00277-012-1487-1

H. Sanoff, W. Carpenter, J. Freburger, L. Li, K. Chen et al., Comparison of adverse events during 5-fluorouracil versus 5-fluorouracil/oxaliplatin adjuvant chemotherapy for stage III colon cancer, Cancer, vol.40, issue.8 suppl, 2012.
DOI : 10.1002/cncr.27422

D. Rubin, Using propensity scores to help design observational studies: application to the tobacco litigation. Health Services and Outcomes Research Methodology, pp.169-188, 2001.

K. Hirano and G. Imbens, Estimation of causal effects using propensity score weighting: An application to data on right heart catheterization. Health Services and Outcomes Research Methodology, pp.259-278, 2001.

D. Kor, M. Brown, R. Iscimen, D. Brown, F. Whalen et al., Perioperative Statin Therapy and Renal Outcomes After Major Vascular Surgery: A Propensity-Based Analysis, Journal of Cardiothoracic and Vascular Anesthesia, vol.22, issue.2, pp.210-216, 2008.
DOI : 10.1053/j.jvca.2007.12.019