N. Schaper, M. Nabuurs-franssen, M. Huijberts, J. Bevan, G. Siegel et al., Peripheral vascular disease and type 2 diabetes mellitus Blood vessel wall matrix flow sensor: Evidence and speculation Pharmacological implications of the flow-dependence of vascular smooth muscle tone, Diabetes Metab Res Rev Blood Vessels Annu Rev Pharmacol Toxicol, vol.1628344, issue.1, pp.11-15552, 1991.

R. Prewitt, D. Rice, A. Dobrian, M. Hill, M. Davis et al., Adaptation of resistance arteries to increases in pressure Arteriolar myogenic signalling mechanisms: Implications for local vascular function Further evidence from an elastic artery that angiotensin ii amplifies noradrenaline-induced contraction through activation of protein kinase c Angiotensin ii amplifies arterial contractile response to norepinephrine without increasing ca++ influx: Role of protein kinase c, Henrion D. Pressure and flow-dependent tone in resistance arteries. Role of myogenic tone. [9] Dowell FJ, Henrion D, Duriez M, Michel JB. Vascular reactivity in mesenteric resistance arteries following chronic nitric oxide synthase inhibition in wistar rats, pp.913-921295, 1992.

F. Dowell, D. Henrion, J. Benessiano, P. Poitevin, and B. Levy, Chronic infusion of low-dose angiotensin II potentiates the adrenergic response in vivo, Journal of Hypertension, vol.14, issue.2, pp.177-182, 1996.
DOI : 10.1097/00004872-199602000-00005

M. Iglarz, K. Matrougui, B. Levy, and D. Henrion, Chronic blockade of endothelin ETA receptors improves flow dependent dilation in resistance arteries of hypertensive rats, Cardiovascular Research, vol.39, issue.3, pp.657-664, 1998.
DOI : 10.1016/S0008-6363(98)00151-5

D. Yeon, J. Kim, D. Ahn, S. Kwon, B. Kang et al., Role of protein kinase C- or RhoA-induced Ca2+ sensitization in stretch-induced myogenic tone, Cardiovascular Research, vol.53, issue.2, pp.431-438, 2002.
DOI : 10.1016/S0008-6363(01)00496-5

C. Dubroca, X. Loyer, K. Retailleau, G. Loirand, P. Pacaud et al., RhoA activation and interaction with Caveolin-1 are critical for pressure-induced myogenic tone in rat mesenteric resistance arteries, Cardiovascular Research, vol.73, issue.1, pp.190-197, 2007.
DOI : 10.1016/j.cardiores.2006.10.020

M. Cipolla, N. Gokina, and G. Osol, Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior, The FASEB Journal, vol.16, issue.1, pp.72-76, 2002.
DOI : 10.1096/cj.01-0104hyp

K. Matrougui, B. Levy, and D. Henrion, Tissue angiotensin II and endothelin-1 modulate differently the response to flow in mesenteric resistance arteries of normotensive and spontaneously hypertensive rats, British Journal of Pharmacology, vol.161, issue.3, pp.521-526, 2000.
DOI : 10.1038/sj.bjp.0703371

M. Feletou and P. Vanhoutte, Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture), AJP: Heart and Circulatory Physiology, vol.291, issue.3, pp.985-1002, 2006.
DOI : 10.1152/ajpheart.00292.2006

W. Aird, Phenotypic Heterogeneity of the Endothelium: II. Representative Vascular Beds, Circulation Research, vol.100, issue.2, pp.174-190, 2007.
DOI : 10.1161/01.RES.0000255690.03436.ae

W. Aird, Phenotypic Heterogeneity of the Endothelium: I. Structure, Function, and Mechanisms, Circulation Research, vol.100, issue.2, pp.158-173, 2007.
DOI : 10.1161/01.RES.0000255691.76142.4a

K. Yamamoto and J. Ando, New Molecular Mechanisms for Cardiovascular Disease: Blood Flow Sensing Mechanism in Vascular Endothelial Cells, Journal of Pharmacological Sciences, vol.116, issue.4, pp.323-331, 2011.
DOI : 10.1254/jphs.10R29FM

H. Korkmaz and O. Onalan, Evaluation of Endothelial Dysfunction: Flow-Mediated Dilation, Endothelium, vol.2, issue.4, pp.157-163, 2008.
DOI : 10.1111/j.1538-7836.2007.02760.x

T. Abdu, T. Elhadd, M. Pfeifer, and R. Clayton, Endothelial dysfunction in endocrine disease, Trends in Endocrinology and Metabolism, vol.12, issue.6, pp.257-265, 2001.
DOI : 10.1016/S1043-2760(01)00425-8

A. Christen, R. Armentano, A. Miranda, S. Graf, D. Santana et al., Arterial Wall Structure and Dynamics in Type 2 Diabetes Mellitus Methodological Aspects and Pathophysiological Findings, Current Diabetes Reviews, vol.6, issue.6, pp.367-377, 2010.
DOI : 10.2174/157339910793499146

R. Djaberi, E. Beishuizen, A. Pereira, T. Rabelink, J. Smit et al., Non-invasive cardiac imaging techniques and vascular tools for the assessment of cardiovascular disease in type 2 diabetes mellitus, Diabetologia, vol.27, issue.Suppl 2, pp.1581-1593, 2008.
DOI : 10.1007/s00125-008-1062-4

R. Tamarat, J. Silvestre, M. Huijberts, J. Benessiano, T. Ebrahimian et al., Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice, Proceedings of the National Academy of Sciences, vol.100, issue.14, pp.8555-8560, 2003.
DOI : 10.1073/pnas.1236929100

J. Van-golde, M. Ruiter, N. Schaper, S. Voo, J. Waltenberger et al., Impaired Collateral Recruitment and Outward Remodeling in Experimental Diabetes, Diabetes, vol.57, issue.10, pp.2818-2823, 2008.
DOI : 10.2337/db08-0229

I. Buschmann and W. Schaper, Arteriogenesis versus angiogenesis: Two mechanisms of vessel growth, News Physiol Sci, vol.14, pp.121-125, 1999.

D. Rizzoni and E. Rosei, Small artery remodeling in diabetes mellitus, Nutrition, Metabolism and Cardiovascular Diseases, vol.19, issue.8, pp.587-592, 2009.
DOI : 10.1016/j.numecd.2009.03.011

E. Rosei and D. Rizzoni, Small artery remodelling in diabetes, J Cell Mol Med, vol.14, pp.1030-1036, 2010.

F. Pourageaud, D. Mey, and J. , Vasomotor responses in chronically hyperperfused and hypoperfused rat mesenteric arteries, Am J Physiol, vol.274, pp.1301-1307, 1998.

O. Dumont, L. Loufrani, and D. Henrion, Key Role of the NO-Pathway and Matrix Metalloprotease-9 in High Blood Flow-Induced Remodeling of Rat Resistance Arteries, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.2, pp.317-324, 2007.
DOI : 10.1161/01.ATV.0000254684.80662.44

URL : https://hal.archives-ouvertes.fr/inserm-00136211

O. Dumont, F. Pinaud, A. Guihot, C. Baufreton, L. Loufrani et al., Alteration in flow (shear stress)-induced remodelling in rat resistance arteries with aging: improvement by a treatment with hydralazine, Cardiovascular Research, vol.77, issue.3, pp.600-608, 2008.
DOI : 10.1093/cvr/cvm055

URL : https://hal.archives-ouvertes.fr/hal-01390572

C. Bouvet, E. De-chantemele, A. Guihot, E. Vessieres, A. Bocquet et al., Flow-Induced Remodeling in Resistance Arteries From Obese Zucker Rats Is Associated With Endothelial Dysfunction, Hypertension, vol.50, issue.1, pp.248-254, 2007.
DOI : 10.1161/HYPERTENSIONAHA.107.088716

J. Tuttle, T. Hahn, B. Sanders, F. Witzmann, S. Miller et al., Impaired collateral development in mature rats, American Journal of Physiology - Heart and Circulatory Physiology, vol.283, issue.1, pp.146-155, 2002.
DOI : 10.1152/ajpheart.00766.2001

I. Nakae, M. Fujita, K. Miwa, K. Hasegawa, Y. Kihara et al., Age-dependent impairment of coronary collateral development in humans, Heart and Vessels, vol.15, issue.4, pp.176-180, 2000.
DOI : 10.1007/PL00007269

H. Turhan, A. Yasar, A. Erbay, E. Yetkin, H. Sasmaz et al., Impaired coronary collateral vessel development in patients with metabolic syndrome, Coronary Artery Disease, vol.16, issue.5, pp.281-285, 2005.
DOI : 10.1097/00019501-200508000-00004

J. Tuttle, B. Sanders, H. Burkhart, S. Fath, K. Kerr et al., Impaired Collateral Artery Development in Spontaneously Hypertensive Rats, Microcirculation, vol.6, issue.Suppl. III, pp.343-351, 2002.
DOI : 10.1038/sj.mn.7800151

E. Belin-de-chantemele, E. Vessieres, A. Guihot, B. Toutain, M. Maquignau et al., Type 2 diabetes severely impairs structural and functional adaptation of rat resistance arteries to chronic changes in blood flow, Cardiovascular Research, vol.81, issue.4, pp.788-796, 2009.
DOI : 10.1093/cvr/cvn334

URL : https://hal.archives-ouvertes.fr/inserm-00344939

M. Mulvany, Small artery remodeling in hypertension, Current Hypertension Reports, vol.97, issue.1, pp.49-55, 2002.
DOI : 10.1007/s11906-002-0053-y

B. Langille, Arterial remodeling: relation to hemodynamics, Canadian Journal of Physiology and Pharmacology, vol.74, issue.7, pp.834-841, 1996.
DOI : 10.1139/y96-082

S. Lehoux, Y. Castier, and A. Tedgui, Molecular mechanisms of the vascular responses to haemodynamic forces, Journal of Internal Medicine, vol.21, issue.1, pp.381-392, 2006.
DOI : 10.1016/S0003-4975(02)03921-8

J. Silvestre, Z. Mallat, A. Tedgui, and B. Levy, Post-ischaemic neovascularization and inflammation, Cardiovascular Research, vol.78, issue.2, pp.242-249, 2008.
DOI : 10.1093/cvr/cvn027

P. Carmeliet, Mechanisms of angiogenesis and arteriogenesis, Nature Medicine, vol.6, issue.4, pp.389-395, 2000.
DOI : 10.1038/74651

A. Koller, A. Huang, D. Sun, and G. Kaley, Exercise Training Augments Flow-Dependent Dilation in Rat Skeletal Muscle Arterioles : Role of Endothelial Nitric Oxide and Prostaglandins, Circulation Research, vol.76, issue.4
DOI : 10.1161/01.RES.76.4.544

D. Gorny, L. Loufrani, N. Kubis, B. Levy, and D. Henrion, Chronic Hydralazine Improves Flow (Shear Stress)-Induced Endothelium-Dependent Dilation in Mouse Mesenteric Resistance Arteries in Vitro, Microvascular Research, vol.64, issue.1, pp.127-134, 2002.
DOI : 10.1006/mvre.2002.2417

J. Unthank, S. Fath, H. Burkhart, S. Miller, and M. Dalsing, Wall Remodeling During Luminal Expansion of Mesenteric Arterial Collaterals in the Rat, Circulation Research, vol.79, issue.5, pp.1015-1023, 1996.
DOI : 10.1161/01.RES.79.5.1015

F. Pourageaud, D. Mey, and J. , Structural properties of rat mesenteric small arteries after 4-wk exposure to elevated or reduced blood flow, Am J Physiol, vol.273, pp.1699-1706, 1997.

C. Buus, F. Pourageaud, G. Fazzi, G. Janssen, M. Mulvany et al., Smooth Muscle Cell Changes During Flow-Related Remodeling of Rat Mesenteric Resistance Arteries, Circulation Research, vol.89, issue.2, pp.180-186, 2001.
DOI : 10.1161/hh1401.093575

L. Loufrani, Z. Li, B. Levy, D. Paulin, and D. Henrion, Excessive Microvascular Adaptation to Changes in Blood Flow in Mice Lacking Gene Encoding for Desmin, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.22, issue.10, pp.1579-1584, 2002.
DOI : 10.1161/01.ATV.0000032652.24932.1A

M. Freidja, E. Vessieres, N. Clere, V. Desquiret, A. Guihot et al., Heme oxygenase-1 induction restores high-blood-flow-dependent remodeling and endothelial function in mesenteric arteries of old rats, Journal of Hypertension, vol.29, issue.1, pp.102-112, 2011.
DOI : 10.1097/HJH.0b013e32833db36e

M. Freidja, B. Toutain, A. Caillon, V. Desquiret, D. Lambert et al., Heme Oxygenase 1 Is Differentially Involved in Blood Flow-Dependent Arterial Remodeling: Role of Inflammation, Oxidative Stress, and Nitric Oxide, Hypertension, vol.58, issue.2, pp.225-231, 2011.
DOI : 10.1161/HYPERTENSIONAHA.111.170266

D. Tulis, J. Unthank, and R. Prewitt, Flow-induced arterial remodeling in rat mesenteric vasculature, Am J Physiol, vol.274, pp.874-882, 1998.

Y. Castier, R. Brandes, G. Leseche, A. Tedgui, and S. Lehoux, p47phox-Dependent NADPH Oxidase Regulates Flow-Induced Vascular Remodeling, Circulation Research, vol.97, issue.6, pp.533-540, 2005.
DOI : 10.1161/01.RES.0000181759.63239.21

K. Retailleau, E. Belin-de-chantemele, S. Chanoine, A. Guihot, E. Vessieres et al., Reactive Oxygen Species and Cyclooxygenase 2-Derived Thromboxane A2 Reduce Angiotensin II Type 2 Receptor Vasorelaxation in Diabetic Rat Resistance Arteries, Hypertension, vol.55, issue.2, pp.339-344, 2010.
DOI : 10.1161/HYPERTENSIONAHA.109.140236

M. Cousin, M. Custaud, C. Baron-menguy, B. Toutain, O. Dumont et al., Role of Angiotensin II in the Remodeling Induced by a Chronic Increase in Flow in Rat Mesenteric Resistance Arteries, Hypertension, vol.55, issue.1, pp.109-115, 2010.
DOI : 10.1161/HYPERTENSIONAHA.108.127456

D. Henrion, J. Benessiano, and B. Levy, In Vitro Modulation of a Resistance Artery Diameter by the Tissue Renin-Angiotensin System of a Large Donor Artery, Circulation Research, vol.80, issue.2, pp.189-195, 1997.
DOI : 10.1161/01.RES.80.2.189

K. Matrougui, L. Loufrani, C. Heymes, B. Levy, and D. Henrion, Activation of AT2 Receptors by Endogenous Angiotensin II Is Involved in Flow-Induced Dilation in Rat Resistance Arteries, Hypertension, vol.34, issue.4, pp.659-665, 1999.
DOI : 10.1161/01.HYP.34.4.659

E. Bakker, H. Matlung, P. Bonta, C. De-vries, N. Van-rooijen et al., Blood flow-dependent arterial remodelling is facilitated by inflammation but directed by vascular tone, Cardiovascular Research, vol.78, issue.2, pp.341-348, 2008.
DOI : 10.1093/cvr/cvn050

E. Bakker, A. Pistea, J. Spaan, R. T. De-vries, C. Van-rooijen et al., Flow-Dependent Remodeling of Small Arteries in Mice Deficient for Tissue-Type Transglutaminase: Possible Compensation by Macrophage-Derived Factor XIII, Circulation Research, vol.99, issue.1, pp.86-92, 2006.
DOI : 10.1161/01.RES.0000229657.83816.a7

E. Bakker, C. Buus, J. Spaan, J. Perree, A. Ganga et al., Small Artery Remodeling Depends on Tissue-Type Transglutaminase, Circulation Research, vol.96, issue.1, pp.119-126, 2005.
DOI : 10.1161/01.RES.0000151333.56089.66

H. Matlung, E. Bakker, and E. Vanbavel, Shear Stress, Reactive Oxygen Species, and Arterial Structure and Function, Antioxidants & Redox Signaling, vol.11, issue.7, pp.1699-1709, 2009.
DOI : 10.1089/ars.2008.2408

C. Yan, A. Huang, G. Kaley, and D. Sun, Chronic high blood flow potentiates shear stress-induced release of NO in arteries of aged rats, AJP: Heart and Circulatory Physiology, vol.293, issue.5, pp.3105-3110, 2007.
DOI : 10.1152/ajpheart.00627.2007

S. Miller, B. Coppinger, X. Zhou, and J. Unthank, Antioxidants Reverse Age-Related Collateral Growth Impairment, Journal of Vascular Research, vol.47, issue.2, pp.108-114, 2010.
DOI : 10.1159/000235965

P. Rocic, C. Kolz, R. Reed, B. Potter, and W. Chilian, Optimal reactive oxygen species concentration and p38 MAP kinase are required for coronary collateral growth, AJP: Heart and Circulatory Physiology, vol.292, issue.6, pp.2729-2736, 2007.
DOI : 10.1152/ajpheart.01330.2006

X. Zhou, H. Bohlen, S. Miller, and J. Unthank, NAD(P)H oxidase-derived peroxide mediates elevated basal and impaired flow-induced NO production in SHR mesenteric arteries in vivo, AJP: Heart and Circulatory Physiology, vol.295, issue.3, pp.1008-1016, 2008.
DOI : 10.1152/ajpheart.00114.2008

X. Zhou, H. Bohlen, J. Unthank, and S. Miller, Abnormal nitric oxide production in aged rat mesenteric arteries is mediated by NAD(P)H oxidase-derived peroxide, AJP: Heart and Circulatory Physiology, vol.297, issue.6, pp.2227-2233, 2009.
DOI : 10.1152/ajpheart.00325.2009

A. Zanchi, E. Delacretaz, V. Taleb, R. Gaillard, B. Jeanrenaud et al., Endothelial function of the mesenteric arteriole and mechanical behaviour of the carotid artery in rats with insulin resistance and hypercholesterolaemia, J Hypertens, vol.13, pp.1463-1470, 1995.

H. Bohlen, Protein kinase ??II in Zucker obese rats compromises oxygen and flow-mediated regulation of nitric oxide formation, AJP: Heart and Circulatory Physiology, vol.286, issue.2, pp.492-497, 2004.
DOI : 10.1152/ajpheart.00818.2003

L. Gao and G. Mann, Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling, Cardiovascular Research, vol.82, issue.1, pp.9-20, 2009.
DOI : 10.1093/cvr/cvp031

E. Teixeira-lemos, S. Nunes, F. Teixeira, and F. Reis, Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties, Cardiovascular Diabetology, vol.10, issue.1, p.12, 2011.
DOI : 10.1186/1475-2840-10-12

T. Traupe, M. Lang, W. Goettsch, K. Munter, H. Morawietz et al., Obesity increases prostanoid-mediated vasoconstriction and vascular thromboxane receptor gene expression, Journal of Hypertension, vol.20, issue.11, pp.2239-2245, 2002.
DOI : 10.1097/00004872-200211000-00024

L. Enevoldsen, B. Stallknecht, J. Fluckey, and H. Galbo, Effect of exercise training on in vivo insulin-stimulated glucose uptake in intra-abdominal adipose tissue in rats, Am J Physiol Endocrinol Metab, vol.278, pp.25-34, 2000.

O. Romanko and D. Stepp, Reduced constrictor reactivity balances impaired vasodilation in the mesenteric circulation of the obese Zucker rat, AJP: Heart and Circulatory Physiology, vol.289, issue.5, pp.2097-2102, 2005.
DOI : 10.1152/ajpheart.00213.2005

E. Belin-de-chantemele, E. Vessieres, O. Dumont, A. Guihot, B. Toutain et al., Reactive Oxygen Species Are Necessary for High Flow (Shear Stress)-induced Diameter Enlargement of Rat Resistance Arteries, Microcirculation, vol.16, issue.5, pp.391-402, 2009.
DOI : 10.1080/10739680902816301

M. Freidja, K. Tarhouni, B. Toutain, C. Fassot-lucht, L. Loufrani et al., The agebreaker alt-711 restores high blood flow-dependent remodeling in mesenteric resistance arteries in a rat model of type 2 diabetes, Diabetes, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00768683

J. Rumble, M. Cooper, T. Soulis, A. Cox, L. Wu et al., Vascular hypertrophy in experimental diabetes. Role of advanced glycation end products., Journal of Clinical Investigation, vol.99, issue.5, pp.1016-1027, 1997.
DOI : 10.1172/JCI119229

A. Goldin, J. Beckman, A. Schmidt, and M. Creager, Advanced Glycation End Products: Sparking the Development of Diabetic Vascular Injury, Circulation, vol.114, issue.6, pp.597-605, 2006.
DOI : 10.1161/CIRCULATIONAHA.106.621854